Classicality with(out) decoherence: Concepts, relation to Markovianity,
and a random matrix theory approach
- URL: http://arxiv.org/abs/2301.02563v3
- Date: Fri, 28 Jul 2023 08:45:20 GMT
- Title: Classicality with(out) decoherence: Concepts, relation to Markovianity,
and a random matrix theory approach
- Authors: Philipp Strasberg
- Abstract summary: decoherence in open quantum systems, consistent/decoherent histories and Kolmogorov consistency are compared.
The crucial role of quantum Markovianity (defined rigorously) to connect these concepts is established.
Quantum effects are shown to be exponentially suppressed in the measurement statistics of slow and coarse observables.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Answers to the question how a classical world emerges from underlying quantum
physics are revisited, connected and extended as follows. First, three distinct
concepts are compared: decoherence in open quantum systems,
consistent/decoherent histories and Kolmogorov consistency. Second, the crucial
role of quantum Markovianity (defined rigorously) to connect these concepts is
established. Third, using a random matrix theory model, quantum effects are
shown to be exponentially suppressed in the measurement statistics of slow and
coarse observables despite the presence of large amount of coherences. This is
also numerically exemplified, and it highlights the potential and importance of
non-integrability and chaos for the emergence of classicality.
Related papers
- Ergodic and chaotic properties in Tavis-Cummings dimer: quantum and classical limit [0.0]
We investigate two key aspects of quantum systems by using the Tavis-Cummings dimer system as a platform.
The first aspect involves unraveling the relationship between the phenomenon of self-trapping (or lack thereof) and integrability (or quantum chaos)
Secondly, we uncover the possibility of mixed behavior in this quantum system using diagnostics based on random matrix theory.
arXiv Detail & Related papers (2024-04-21T13:05:29Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - Signatures of dissipative quantum chaos [0.0]
This thesis lays out a generic framework for the study of the universal properties of realistic, chaotic, and dissipative quantum systems.
It provides the concrete building blocks of dynamical dissipative evolution constrained by symmetry.
arXiv Detail & Related papers (2023-11-02T18:08:48Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Connecting Commutativity and Classicality for Multi-Time Quantum
Processes [0.0]
We focus on the relationship between Kolmogorov consistency of measurement statistics and the commutativity of measurement operators.
On the other hand, commutativity of measurement operators is a structural property that holds in classical physics.
We detail their implications for memoryless multi-time quantum processes.
arXiv Detail & Related papers (2022-04-25T14:41:08Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Fermionic duality: General symmetry of open systems with strong
dissipation and memory [0.0]
We present a nontrivial fermionic duality relation between the evolution of states (Schr"odinger) and of observables (Heisenberg)
We show how this highly nonintuitive relation can be understood and exploited in analytical calculations within all canonical approaches to quantum dynamics.
arXiv Detail & Related papers (2021-04-22T17:37:42Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.