Correspondence principle, dissipation, and Ginibre ensemble
- URL: http://arxiv.org/abs/2507.18704v1
- Date: Thu, 24 Jul 2025 18:00:04 GMT
- Title: Correspondence principle, dissipation, and Ginibre ensemble
- Authors: David VillaseƱor, Hua Yan, Matic Orel, Marko Robnik,
- Abstract summary: Correspondence between quantum and classical behavior has been essential since the advent of quantum mechanics.<n>When dissipation is considered, quantum chaos takes concepts from isolated quantum chaos to link classical chaotic motion with spectral correlations of Ginibre ensembles.<n>This correspondence was first identified in periodically kicked systems with damping, but it has been shown to break down in dissipative atom-photon systems.
- Score: 3.7140291294230114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The correspondence between quantum and classical behavior has been essential since the advent of quantum mechanics. This principle serves as a cornerstone for understanding quantum chaos, which has garnered increased attention due to its strong impact in various theoretical and experimental fields. When dissipation is considered, quantum chaos takes concepts from isolated quantum chaos to link classical chaotic motion with spectral correlations of Ginibre ensembles. This correspondence was first identified in periodically kicked systems with damping, but it has been shown to break down in dissipative atom-photon systems [Phys. Rev. Lett. 133, 240404 (2024)]. In this contribution, we revisit the original kicked model and perform a systematic exploration across a broad parameter space, reaching a genuine semiclassical limit. Our results demonstrate that the correspondence principle, as defined through this spectral connection, fails even in this prototypical system. These findings provide conclusive evidence that Ginibre spectral correlations are neither a robust nor a universal diagnostic of dissipative quantum chaos.
Related papers
- Error-resilient Reversal of Quantum Chaotic Dynamics Enabled by Scramblons [16.71116343065157]
arrow of time in quantum many-body systems stems from Hamiltonian evolution to scramble quantum information and increase entanglement.<n>We study the structure of quantum information scrambling and chaotic dynamics.<n>Our results push the fundamental limits of dynamical revers of complex quantum systems.
arXiv Detail & Related papers (2025-06-24T18:00:05Z) - Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.<n>We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.<n>We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Breakdown of the Quantum Distinction of Regular and Chaotic Classical Dynamics in Dissipative Systems [0.0]
In an isolated system, quantum chaos refers to properties of the spectrum that emerge when the classical counterpart of the system is chaotic.<n>We show that the onset of cubic level repulsion in the open quantum model is not always related with chaotic structures in the classical limit.
arXiv Detail & Related papers (2024-06-11T18:00:03Z) - Ergodic and chaotic properties in Tavis-Cummings dimer: quantum and classical limit [0.0]
We investigate two key aspects of quantum systems by using the Tavis-Cummings dimer system as a platform.
The first aspect involves unraveling the relationship between the phenomenon of self-trapping (or lack thereof) and integrability (or quantum chaos)
Secondly, we uncover the possibility of mixed behavior in this quantum system using diagnostics based on random matrix theory.
arXiv Detail & Related papers (2024-04-21T13:05:29Z) - Decoherence rate in random Lindblad dynamics [4.535465727794938]
We study the dynamics of open chaotic quantum systems governed by random Lindblad operators.
Our work identifies primary features of decoherence in dissipative quantum chaos.
arXiv Detail & Related papers (2024-02-07T09:50:00Z) - Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - Classicality with(out) decoherence: Concepts, relation to Markovianity,
and a random matrix theory approach [0.0]
decoherence in open quantum systems, consistent/decoherent histories and Kolmogorov consistency are compared.
The crucial role of quantum Markovianity (defined rigorously) to connect these concepts is established.
Quantum effects are shown to be exponentially suppressed in the measurement statistics of slow and coarse observables.
arXiv Detail & Related papers (2023-01-06T15:22:47Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Semiclassical roots of universality in many-body quantum chaos [0.0]
In quantum systems with a classical limit, advanced semiclassical methods provide the crucial link between classically chaotic dynamics and corresponding universal features at the quantum level.
This paper provides a unified framework for understanding random-matrix correlations of both single-particle and many-body quantum chaotic systems.
Case studies presented include a many-body version of Gutzwiller's trace formula for the spectral density and out-of-time-order correlators along with brief remarks on where further progress may be forthcoming.
arXiv Detail & Related papers (2022-05-05T18:07:57Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.