論文の概要: Using External Off-Policy Speech-To-Text Mappings in Contextual
End-To-End Automated Speech Recognition
- arxiv url: http://arxiv.org/abs/2301.02736v1
- Date: Fri, 6 Jan 2023 22:32:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 18:47:49.556486
- Title: Using External Off-Policy Speech-To-Text Mappings in Contextual
End-To-End Automated Speech Recognition
- Title(参考訳): 文脈内終端自動音声認識における外部オフポリティ・スピーチ・トゥ・テキストマッピングの利用
- Authors: David M. Chan, Shalini Ghosh, Ariya Rastrow, Bj\"orn Hoffmeister
- Abstract要約: 本稿では,外部知識の活用の可能性について検討する。
提案手法では,音声の音声埋め込みと意味的テキスト埋め込みを併用して,ASRに偏りを生じさせる。
LibiriSpeechと社内音声アシスタント/検索データセットの実験により、提案手法により、最大1KのGPU時間でドメイン適応時間を短縮できることが示された。
- 参考スコア(独自算出の注目度): 19.489794740679024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite improvements to the generalization performance of automated speech
recognition (ASR) models, specializing ASR models for downstream tasks remains
a challenging task, primarily due to reduced data availability (necessitating
increased data collection), and rapidly shifting data distributions (requiring
more frequent model fine-tuning). In this work, we investigate the potential of
leveraging external knowledge, particularly through off-policy key-value stores
generated with text-to-speech methods, to allow for flexible post-training
adaptation to new data distributions. In our approach, audio embeddings
captured from text-to-speech, along with semantic text embeddings, are used to
bias ASR via an approximate k-nearest-neighbor (KNN) based attentive fusion
step. Our experiments on LibiriSpeech and in-house voice assistant/search
datasets show that the proposed approach can reduce domain adaptation time by
up to 1K GPU-hours while providing up to 3% WER improvement compared to a
fine-tuning baseline, suggesting a promising approach for adapting production
ASR systems in challenging zero and few-shot scenarios.
- Abstract(参考訳): 自動音声認識(ASR)モデルの一般化性能の改善にもかかわらず、ダウンストリームタスクのためのASRモデルの特殊化は、主にデータ可用性の低下(データ収集の増大)とデータ分散の急激なシフト(より頻繁なモデル微調整の要求)のために難しい課題である。
本研究では,外部知識の活用の可能性,特にtext-to-speech法で生成されたオフポリシックキーバリューストアを用いて,新しいデータ分布へのフレキシブルなトレーニング後適応を可能にする。
提案手法では,テキストから音声への埋め込みとセマンティックテキストの埋め込みを併用して,k-nearest-neighbor (KNN) に基づく注意融合ステップを用いて,ASRに偏りを与える。
libirispeechと社内の音声アシスタント/検索データセットに関する実験では、提案手法はドメイン適応時間を最大1kgpu時間に短縮できると同時に、微調整ベースラインと比較して最大3%改善できることが示され、ゼロおよび少数ショットシナリオに挑戦して生産asrシステムを適用するための有望なアプローチが示唆された。
関連論文リスト
- Predictive Speech Recognition and End-of-Utterance Detection Towards Spoken Dialog Systems [55.99999020778169]
本稿では,次の単語を予測し,発話終了まで残される時間を推定する機能について検討する。
我々は,音響情報と言語情報の両方を組み込んだクロスアテンションに基づくアルゴリズムを開発した。
その結果,提案モデルでは,提案する単語を予測し,将来のEOUイベントを実際のEOUより300ミリ秒前まで推定する能力を示した。
論文 参考訳(メタデータ) (2024-09-30T06:29:58Z) - Extending Whisper with prompt tuning to target-speaker ASR [18.31992429200396]
ターゲット話者自動音声認識(Target-Speaker Automatic Speech Recognition, ASR)は、ターゲット話者の所望の音声を重なり合う発話から書き起こすことを目的としている。
既存のターゲットスピーカーASR(TS-ASR)の手法のほとんどは、スクラッチからトレーニングするか、事前訓練されたモデルを完全に微調整するものである。
この研究は、パラメータ効率のよい微調整手法であるプロンプトチューニングを利用して、大規模なシングルストーカーASRモデルであるWhisperをTS-ASRに拡張する。
論文 参考訳(メタデータ) (2023-12-13T11:49:16Z) - STOP: A dataset for Spoken Task Oriented Semantic Parsing [66.14615249745448]
エンドツーエンド音声言語理解(SLU)は単一モデルを用いて音声から直接意図を予測する。
Spoken Task-Oriented semantic Parsing (STOP) データセットをリリースします。
人間が録音した音声に加えて、我々はTS生成バージョンをリリースし、エンド・ツー・エンドのSLUシステムの低リソース領域適応の性能をベンチマークする。
論文 参考訳(メタデータ) (2022-06-29T00:36:34Z) - Deliberation Model for On-Device Spoken Language Understanding [69.5587671262691]
我々は、エンドツーエンド(E2E)音声言語理解(SLU)に対する新しい議論に基づくアプローチを提案する。
提案手法は,自然言語から合成音声訓練に移行する際の劣化を著しく低減できることを示す。
論文 参考訳(メタデータ) (2022-04-04T23:48:01Z) - A Likelihood Ratio based Domain Adaptation Method for E2E Models [10.510472957585646]
Recurrent Neural Networks Transducer (RNN-T)のようなエンドツーエンド(E2E)自動音声認識モデルは、音声アシスタントのようなASRアプリケーションをストリーミングするための一般的な選択肢になりつつある。
E2Eモデルはトレーニング対象のトレーニングデータの表現を学習するのに非常に効果的だが、未確認領域での精度は依然として難しい問題である。
本研究では、テキストデータソースを活用してRNN-Tモデルを新しいドメインやエンティティに適用する、確率比を用いたコンテキストバイアス手法について検討する。
論文 参考訳(メタデータ) (2022-01-10T21:22:39Z) - Advanced Long-context End-to-end Speech Recognition Using
Context-expanded Transformers [56.56220390953412]
コンフォーメータアーキテクチャを導入することで、精度をさらに向上させ、以前の作業を拡張します。
拡張トランスフォーマーは、最先端のエンドツーエンドのASR性能を提供する。
論文 参考訳(メタデータ) (2021-04-19T16:18:00Z) - ATCSpeechNet: A multilingual end-to-end speech recognition framework for
air traffic control systems [15.527854608553824]
ATCSpeechNetは、航空交通制御システムにおけるコミュニケーション音声を人間可読テキストに変換する問題に取り組むために提案されている。
特徴工学や辞書を使わずに、音声波形を直接テキストに変換するエンドツーエンドのパラダイムが開発されている。
ATCSpeech corpusの実験結果から,非常に小さなラベル付きコーパスを用いて,提案手法が高い性能を実現することが示された。
論文 参考訳(メタデータ) (2021-02-17T02:27:09Z) - Robust Prediction of Punctuation and Truecasing for Medical ASR [18.08508027663331]
本稿では,句読点と実測点の予測のための条件付き共同モデリングフレームワークを提案する。
また,医療領域データを用いた微調整型マスキング言語モデルによるドメイン・タスク特化手法を提案する。
論文 参考訳(メタデータ) (2020-07-04T07:15:13Z) - You Do Not Need More Data: Improving End-To-End Speech Recognition by
Text-To-Speech Data Augmentation [59.31769998728787]
我々は、ASRトレーニングデータベース上にTSシステムを構築し、合成音声でデータを拡張し、認識モデルを訓練する。
テストクリーンはWER 4.3%,他のテストクリーンは13.5%で、このシステムはLibriSpeechトレインクリーン100で訓練されたエンドツーエンドASRの競争結果を確立している。
論文 参考訳(メタデータ) (2020-05-14T17:24:57Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
我々は、可読性のためのASRポストプロセッシング(APR)と呼ばれる新しいNLPタスクを提案する。
APRは、ノイズの多いASR出力を、話者の意味を保ちながら、人間や下流タスクのための読みやすいテキストに変換することを目的としている。
我々は,いくつかのオープンソースモデルと適応型事前学習モデルに基づく微調整モデルと,従来のパイプライン手法との比較を行った。
論文 参考訳(メタデータ) (2020-04-09T09:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。