論文の概要: Lightweight Salient Object Detection in Optical Remote-Sensing Images
via Semantic Matching and Edge Alignment
- arxiv url: http://arxiv.org/abs/2301.02778v2
- Date: Mon, 3 Apr 2023 05:02:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 23:23:52.804334
- Title: Lightweight Salient Object Detection in Optical Remote-Sensing Images
via Semantic Matching and Edge Alignment
- Title(参考訳): 意味マッチングとエッジアライメントを用いた光リモートセンシング画像における軽量サルエント物体検出
- Authors: Gongyang Li, Zhi Liu, Xinpeng Zhang, Weisi Lin
- Abstract要約: セマンティックマッチングとエッジアライメントに基づく光リモートセンシング画像(ORSI-SOD)のための新しい軽量ネットワークSeaNetを提案する。
具体的には、機能抽出のための軽量MobileNet-V2、高レベルの機能のための動的セマンティックマッチングモジュール(DSMM)、推論のためのポータブルデコーダが含まれる。
- 参考スコア(独自算出の注目度): 61.45639694373033
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, relying on convolutional neural networks (CNNs), many methods for
salient object detection in optical remote sensing images (ORSI-SOD) are
proposed. However, most methods ignore the huge parameters and computational
cost brought by CNNs, and only a few pay attention to the portability and
mobility. To facilitate practical applications, in this paper, we propose a
novel lightweight network for ORSI-SOD based on semantic matching and edge
alignment, termed SeaNet. Specifically, SeaNet includes a lightweight
MobileNet-V2 for feature extraction, a dynamic semantic matching module (DSMM)
for high-level features, an edge self-alignment module (ESAM) for low-level
features, and a portable decoder for inference. First, the high-level features
are compressed into semantic kernels. Then, semantic kernels are used to
activate salient object locations in two groups of high-level features through
dynamic convolution operations in DSMM. Meanwhile, in ESAM, cross-scale edge
information extracted from two groups of low-level features is self-aligned
through L2 loss and used for detail enhancement. Finally, starting from the
highest-level features, the decoder infers salient objects based on the
accurate locations and fine details contained in the outputs of the two
modules. Extensive experiments on two public datasets demonstrate that our
lightweight SeaNet not only outperforms most state-of-the-art lightweight
methods but also yields comparable accuracy with state-of-the-art conventional
methods, while having only 2.76M parameters and running with 1.7G FLOPs for
288x288 inputs. Our code and results are available at
https://github.com/MathLee/SeaNet.
- Abstract(参考訳): 近年,畳み込みニューラルネットワーク(cnns)に依存する光リモートセンシング画像(ori-sod)における物体検出手法が数多く提案されている。
しかし、ほとんどの手法はcnnがもたらした膨大なパラメータと計算コストを無視しており、可搬性と移動性に注意を払うのはごくわずかである。
本稿では,セマンティックマッチングとエッジアライメントに基づくORSI-SODのための新しい軽量ネットワークSeaNetを提案する。
具体的には、機能抽出のための軽量MobileNet-V2、高レベルの機能のための動的セマンティックマッチングモジュール(DSMM)、低レベルの機能のためのエッジ自己調整モジュール(ESAM)、推論のためのポータブルデコーダを含む。
まず、高レベルの機能はセマンティックカーネルに圧縮される。
次に,DSMMの動的畳み込み操作により,高次特徴の2つのグループにおける有能なオブジェクト位置を活性化する。
一方,ESAMでは,低レベル特徴群2群から抽出したクロススケールエッジ情報をL2損失により自己整合させ,詳細化に利用する。
最後に、最高レベルの特徴から、デコーダは2つのモジュールの出力に含まれる正確な位置と細部に基づいて、正常なオブジェクトを推論する。
2つの公開データセットに関する大規模な実験によると、私たちの軽量SeaNetは、最先端の軽量メソッドよりも優れているだけでなく、最先端の従来手法と同等の精度を得られる。
私たちのコードと結果はhttps://github.com/mathlee/seanetで入手できます。
関連論文リスト
- BAFNet: Bilateral Attention Fusion Network for Lightweight Semantic Segmentation of Urban Remote Sensing Images [6.153725909241752]
本研究では,高分解能な都市リモートセンシング画像の分割を効率的に行うために,両側注意融合ネットワーク(BAFNet)と呼ばれる軽量なセマンティックセマンティックセマンティクスネットワークを提案する。
BAFNetは高度な軽量モデルを精度で上回るが、2つのデータセット上の非軽量な最先端メソッドに匹敵するパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-09-16T13:25:42Z) - LSKNet: A Foundation Lightweight Backbone for Remote Sensing [78.29112381082243]
本稿では,軽量なLarge Selective Kernel Network (LSKNet) バックボーンを提案する。
LSKNetはその大きな空間受容場を調整し、リモートセンシングシナリオにおける様々なオブジェクトの範囲をモデル化する。
我々の軽量LSKNetは、標準リモートセンシング分類、オブジェクト検出、セマンティックセグメンテーションベンチマークに基づいて、最先端のスコアを設定しています。
論文 参考訳(メタデータ) (2024-03-18T12:43:38Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
光リモートセンシング画像(ORSI-SOD)のためのGlobal extract Local Exploration Network(GeleNet)を提案する。
具体的には、GeleNetはまずトランスフォーマーバックボーンを採用し、グローバルな長距離依存関係を持つ4レベルの機能埋め込みを生成する。
3つの公開データセットに関する大規模な実験は、提案されたGeleNetが関連する最先端メソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-09-15T07:14:43Z) - DPNet: Dual-Path Network for Real-time Object Detection with Lightweight
Attention [15.360769793764526]
本稿では,リアルタイム物体検出のための軽量アテンション方式を用いて,DPNetというデュアルパスネットワークを提案する。
DPNetは、検出精度と実装効率の間の最先端のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-09-28T09:11:01Z) - Adjacent Context Coordination Network for Salient Object Detection in
Optical Remote Sensing Images [102.75699068451166]
本稿では,光RSI-SODのためのエンコーダ・デコーダアーキテクチャにおいて,隣接した特徴のコーディネートを探索するための新しいアジャセントコンテキストコーディネートネットワーク(ACCoNet)を提案する。
提案されたACCoNetは、9つの評価基準の下で22の最先端メソッドを上回り、1つのNVIDIA Titan X GPU上で81fpsで動作する。
論文 参考訳(メタデータ) (2022-03-25T14:14:55Z) - Lightweight Salient Object Detection in Optical Remote Sensing Images
via Feature Correlation [93.80710126516405]
本稿では,これらの問題に対処する軽量ORSI-SODソリューションであるCorrNetを提案する。
それぞれのコンポーネントのパラメータと計算を減らし、CorrNetは4.09Mのパラメータしか持たず、21.09GのFLOPで実行している。
2つの公開データセットの実験結果から、私たちの軽量なCorrNetは、26の最先端メソッドと比較して、競争力やパフォーマンスがさらに向上することが示された。
論文 参考訳(メタデータ) (2022-01-20T08:28:01Z) - An Attention-Fused Network for Semantic Segmentation of
Very-High-Resolution Remote Sensing Imagery [26.362854938949923]
注目融合ネットワーク(AFNet)という,新しい畳み込みニューラルネットワークアーキテクチャを提案する。
ISPRS Vaihingen 2DデータセットとISPRS Potsdam 2Dデータセットで、総精度91.7%、平均F1スコア90.96%の最先端のパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-05-10T06:23:27Z) - Adaptive Linear Span Network for Object Skeleton Detection [56.78705071830965]
本研究では,適応線形スパンネットワーク(AdaLSN)を提案する。
AdaLSNは、精度とレイテンシのトレードオフを著しく高めることで、その汎用性を裏付ける。
また、エッジ検出や道路抽出といったイメージ・ツー・マスクのタスクに適用可能であることも示している。
論文 参考訳(メタデータ) (2020-11-08T12:51:14Z) - MACU-Net for Semantic Segmentation of Fine-Resolution Remotely Sensed
Images [11.047174552053626]
MACU-Netは、マルチスケールのスキップ接続と非対称畳み込みベースのU-Netで、微細解像度のリモートセンシング画像を提供する。
本設計では,(1)低レベル・高レベルの特徴写像に含まれる意味的特徴と,(2)非対称な畳み込みブロックは,標準畳み込み層の特徴表現と特徴抽出能力を強化する。
2つのリモートセンシングデータセットで行った実験では、提案したMACU-NetがU-Net、U-NetPPL、U-Net 3+、その他のベンチマークアプローチを超越していることが示されている。
論文 参考訳(メタデータ) (2020-07-26T08:56:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。