Energy Disaggregation & Appliance Identification in a Smart Home: Transfer Learning enables Edge Computing
- URL: http://arxiv.org/abs/2301.03018v2
- Date: Thu, 14 Mar 2024 08:50:35 GMT
- Title: Energy Disaggregation & Appliance Identification in a Smart Home: Transfer Learning enables Edge Computing
- Authors: M. Hashim Shahab, Hasan Mujtaba Buttar, Ahsan Mehmood, Waqas Aman, M. Mahboob Ur Rahman, M. Wasim Nawaz, Haris Pervaiz, Qammer H. Abbasi,
- Abstract summary: Non-intrusive load monitoring (NILM) or energy disaggregation aims to extract the load profiles of individual consumer electronic appliances.
This work proposes a novel deep-learning and edge computing approach to solve the NILM problem.
- Score: 2.921708254378147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-intrusive load monitoring (NILM) or energy disaggregation aims to extract the load profiles of individual consumer electronic appliances, given an aggregate load profile of the mains of a smart home. This work proposes a novel deep-learning and edge computing approach to solve the NILM problem and a few related problems as follows. 1) We build upon the reputed seq2-point convolutional neural network (CNN) model to come up with the proposed seq2-[3]-point CNN model to solve the (home) NILM problem and site-NILM problem (basically, NILM at a smaller scale). 2) We solve the related problem of appliance identification by building upon the state-of-the-art (pre-trained) 2D-CNN models, i.e., AlexNet, ResNet-18, and DenseNet-121, which are fine-tuned two custom datasets that consist of Wavelets and short-time Fourier transform (STFT)-based 2D electrical signatures of the appliances. 3) Finally, we do some basic qualitative inference about an individual appliance's health by comparing the power consumption of the same appliance across multiple homes. Low-frequency REDD dataset is used for all problems, except site-NILM where REFIT dataset has been used. As for the results, we achieve a maximum accuracy of 94.6\% for home-NILM, 81\% for site-NILM, and 88.9\% for appliance identification (with Resnet-based model).
Related papers
- Benchmarking Active Learning for NILM [2.896640219222859]
Non-intrusive load monitoring (NILM) focuses on disaggregating total household power consumption into appliance-specific usage.
Many advanced NILM methods are based on neural networks that typically require substantial amounts of labeled appliance data.
We propose an active learning approach to selectively install appliance monitors in a limited number of houses.
arXiv Detail & Related papers (2024-11-24T12:22:59Z) - NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural
Network Inference in Low-Voltage Regimes [52.51014498593644]
Deep neural networks (DNNs) have become ubiquitous in machine learning, but their energy consumption remains a notable issue.
We introduce NeuralFuse, a novel add-on module that addresses the accuracy-energy tradeoff in low-voltage regimes.
At a 1% bit error rate, NeuralFuse can reduce memory access energy by up to 24% while recovering accuracy by up to 57%.
arXiv Detail & Related papers (2023-06-29T11:38:22Z) - MSDC: Exploiting Multi-State Power Consumption in Non-intrusive Load
Monitoring based on A Dual-CNN Model [18.86649389838833]
Non-intrusive load monitoring (NILM) aims to decompose aggregated electrical usage signal into appliance-specific power consumption.
We design a new neural NILM model Multi-State Dual CNN (MSDC)
MSDC explicitly extracts information about the appliance's multiple states and state transitions, which in turn regulates the prediction of signals for appliances.
arXiv Detail & Related papers (2023-02-11T01:56:54Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
The paper tackles the challenge by designing a general framework to construct 3D learning architectures.
The proposed approach can be applied to general backbones like PointNet and DGCNN.
Experiments on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated that the method achieves a great trade-off between efficiency, rotation, and accuracy.
arXiv Detail & Related papers (2022-09-13T12:12:19Z) - Conv-NILM-Net, a causal and multi-appliance model for energy source
separation [1.1355370218310157]
Non-Intrusive Load Monitoring seeks to save energy by estimating individual appliance power usage from a single aggregate measurement.
Deep neural networks have become increasingly popular in attempting to solve NILM problems.
We propose Conv-NILM-net, a fully convolutional framework for end-to-end NILM.
arXiv Detail & Related papers (2022-08-03T15:59:32Z) - IMG-NILM: A Deep learning NILM approach using energy heatmaps [0.0]
Energy disaggregation estimates appliance-by-appliance electricity consumption from a single meter.
IMG-NILM is flexible and shows consistent performance in disaggregating various types of appliances.
It attains a test accuracy of up to 93% on the UK dale dataset within a single house, where a substantial number of appliances are present.
arXiv Detail & Related papers (2022-07-12T11:22:01Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Smart non-intrusive appliance identification using a novel local power
histogramming descriptor with an improved k-nearest neighbors classifier [2.389598109913753]
This paper proposes a smart NILM system based on a novel local power histogramming (LPH) descriptor.
Specifically, short local histograms are drawn to represent individual appliance consumption signatures.
An improved k-nearest neighbors (IKNN) algorithm is presented to reduce the learning time and improve the classification performance.
arXiv Detail & Related papers (2021-02-09T13:12:20Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.