論文の概要: Deepfake CAPTCHA: A Method for Preventing Fake Calls
- arxiv url: http://arxiv.org/abs/2301.03064v1
- Date: Sun, 8 Jan 2023 15:34:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 16:22:47.405149
- Title: Deepfake CAPTCHA: A Method for Preventing Fake Calls
- Title(参考訳): Deepfake CAPTCHA:フェイクコールの防止方法
- Authors: Lior Yasur, Guy Frankovits, Fred M. Grabovski, Yisroel Mirsky
- Abstract要約: リアルタイムディープフェイク対策としてD-CAPTCHAを提案する。
アプローチは、ディープフェイクモデルに挑戦して、その能力を超えるコンテンツを生成することで、相手をスポットライトに強制することである。
既存のCAPTCHAとは対照的に、コンテンツを分類する能力とは対照的に、コンテンツを作成するAIの能力に挑戦する。
- 参考スコア(独自算出の注目度): 5.810459869589559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning technology has made it possible to generate realistic content
of specific individuals. These `deepfakes' can now be generated in real-time
which enables attackers to impersonate people over audio and video calls.
Moreover, some methods only need a few images or seconds of audio to steal an
identity. Existing defenses perform passive analysis to detect fake content.
However, with the rapid progress of deepfake quality, this may be a losing
game.
In this paper, we propose D-CAPTCHA: an active defense against real-time
deepfakes. The approach is to force the adversary into the spotlight by
challenging the deepfake model to generate content which exceeds its
capabilities. By doing so, passive detection becomes easier since the content
will be distorted. In contrast to existing CAPTCHAs, we challenge the AI's
ability to create content as opposed to its ability to classify content. In
this work we focus on real-time audio deepfakes and present preliminary results
on video.
In our evaluation we found that D-CAPTCHA outperforms state-of-the-art audio
deepfake detectors with an accuracy of 91-100% depending on the challenge
(compared to 71% without challenges). We also performed a study on 41
volunteers to understand how threatening current real-time deepfake attacks
are. We found that the majority of the volunteers could not tell the difference
between real and fake audio.
- Abstract(参考訳): ディープラーニング技術は、特定の個人の現実的なコンテンツを生成することを可能にする。
これらの‘ディープフェイク’はリアルタイムで生成可能になり、攻撃者は音声やビデオ通話で人を偽装できる。
さらに、IDを盗むのに数枚の画像や秒のオーディオしか必要としないメソッドもある。
既存の防御は、偽コンテンツを検出するために受動的解析を行う。
しかし、ディープフェイク品質の急速な進歩により、これは負けたゲームかもしれない。
本稿では,リアルタイムディープフェイク対策としてD-CAPTCHAを提案する。
アプローチは、ディープフェイクモデルに挑戦して、その能力を超えるコンテンツを生成することで、相手をスポットライトに強制することである。
これにより、コンテンツが歪むため受動的検出が容易になる。
既存のCAPTCHAとは対照的に、コンテンツを分類する能力とは対照的に、コンテンツを作成するAIの能力に挑戦する。
本研究では,リアルタイムオーディオディープフェイクに着目し,ビデオの予備結果を示す。
評価の結果,D-CAPTCHAは難易度に応じて91~100%の精度で最先端のオーディオディープフェイク検出器より優れていることがわかった。
また,現在のリアルタイムディープフェイク攻撃の脅威について,41名のボランティアによる調査を行った。
その結果、ボランティアの大多数は、本物と偽のオーディオの違いを把握できなかった。
関連論文リスト
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
被害者や人物のディープフェイクは、脅迫、ゆがみ、金融詐欺の詐欺師によって使用される。
本研究では,映像中の顔の存在の動的度を特徴付ける幾何学的フェイクネス機能(GFF)を提案する。
我々は、ビデオに同時に存在する複数の顔でビデオを分析するために、我々のアプローチを採用している。
論文 参考訳(メタデータ) (2024-10-10T13:10:34Z) - Shaking the Fake: Detecting Deepfake Videos in Real Time via Active Probes [3.6308756891251392]
生成AIの一種であるリアルタイムディープフェイク(Real-time Deepfake)は、ビデオ内の既存のコンテンツ(例えば、顔を別のものと交換する)を「生成する」ことができる。
金融詐欺や政治的誤報など、悪意ある目的のためにディープフェイクビデオを作るのに誤用されている。
本研究では,物理干渉に適応できないディープフェイクモデルを利用した新しいリアルタイムディープフェイク検出手法であるSFakeを提案する。
論文 参考訳(メタデータ) (2024-09-17T04:58:30Z) - Unmasking Illusions: Understanding Human Perception of Audiovisual Deepfakes [49.81915942821647]
本研究は,ディープフェイク映像を主観的研究により識別する人間の能力を評価することを目的とする。
人間の観察者を5つの最先端オーディオ視覚深度検出モデルと比較することにより,その知見を提示する。
同じ40の動画で評価すると、すべてのAIモデルは人間より優れていることが分かりました。
論文 参考訳(メタデータ) (2024-05-07T07:57:15Z) - Turn Fake into Real: Adversarial Head Turn Attacks Against Deepfake
Detection [58.1263969438364]
本稿では,3次元対向顔視によるディープフェイク検出器に対する最初の試みとして,対向頭部旋回(AdvHeat)を提案する。
実験では、現実的なブラックボックスシナリオにおいて、様々な検出器のAdvHeatに対する脆弱性を検証する。
さらなる分析により、AdvHeatは、クロス検出器転送性と防御に対する堅牢性の両方に対する従来の攻撃よりも優れていることが示されている。
論文 参考訳(メタデータ) (2023-09-03T07:01:34Z) - GOTCHA: Real-Time Video Deepfake Detection via Challenge-Response [17.117162678626418]
本稿では,ライブ環境での信頼性を確立するための課題応答手法を提案する。
本稿では,RTDF生成パイプラインに固有の制約を特に対象とする課題の分類について述べる。
この結果は、説明可能でスケーラブルなリアルタイムディープフェイク検出のためのチャレンジ応答システムの有望な可能性を示している。
論文 参考訳(メタデータ) (2022-10-12T13:15:54Z) - Deepfake Caricatures: Amplifying attention to artifacts increases
deepfake detection by humans and machines [17.7858728343141]
ディープフェイクは誤報を燃やすことでデジタルウェルビーイングに深刻な脅威をもたらす。
ディープフェイクビデオのアーティファクトを増幅するフレームワークを導入し、人々がより検出できるようにする。
本稿では,ビデオアーティファクトをハイライトするアテンションマップを作成するために,人間の反応をトレーニングする,新しい半教師付きアーティファクトアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2022-06-01T14:43:49Z) - Audio-Visual Person-of-Interest DeepFake Detection [77.04789677645682]
本研究の目的は、現実世界で遭遇する様々な操作方法やシナリオに対処できるディープフェイク検出器を提案することである。
我々は、対照的な学習パラダイムを活用して、各アイデンティティに対して最も識別しやすい、移動面と音声セグメントの埋め込みを学習する。
本手法は,シングルモダリティ(オーディオのみ,ビデオのみ)とマルチモダリティ(オーディオビデオ)の両方を検出でき,低品質・低画質ビデオに対して堅牢である。
論文 参考訳(メタデータ) (2022-04-06T20:51:40Z) - Watch Those Words: Video Falsification Detection Using Word-Conditioned
Facial Motion [82.06128362686445]
本稿では,安価なディープフェイクと視覚的に説得力のあるディープフェイクの両方を扱うためのマルチモーダルな意味法医学的アプローチを提案する。
帰属という概念を利用して、ある話者と他の話者を区別する個人固有の生体パターンを学習する。
既存の個人固有のアプローチとは異なり、この手法は口唇の操作に焦点を当てた攻撃にも有効である。
論文 参考訳(メタデータ) (2021-12-21T01:57:04Z) - Evaluation of an Audio-Video Multimodal Deepfake Dataset using Unimodal
and Multimodal Detectors [18.862258543488355]
ディープフェイクはセキュリティとプライバシーの問題を引き起こす可能性がある。
ディープラーニング技術を使って人間の声をクローンする新しい領域も登場しつつある。
優れたディープフェイク検出器を開発するには、複数のモードのディープフェイクを検出する検出器が必要である。
論文 参考訳(メタデータ) (2021-09-07T11:00:20Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
我々は,インターネットから完全に収集された707のディープフェイクビデオから抽出された7,314の顔シーケンスからなる新しいデータセットWildDeepfakeを紹介した。
既存のWildDeepfakeデータセットと我々のWildDeepfakeデータセットのベースライン検出ネットワークを体系的に評価し、WildDeepfakeが実際により困難なデータセットであることを示す。
論文 参考訳(メタデータ) (2021-01-05T11:10:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。