Latent Spectral Regularization for Continual Learning
- URL: http://arxiv.org/abs/2301.03345v4
- Date: Tue, 16 Jul 2024 12:33:12 GMT
- Title: Latent Spectral Regularization for Continual Learning
- Authors: Emanuele Frascaroli, Riccardo Benaglia, Matteo Boschini, Luca Moschella, Cosimo Fiorini, Emanuele RodolĂ , Simone Calderara,
- Abstract summary: We study the phenomenon by investigating the geometric characteristics of the learner's latent space.
We propose a geometric regularizer that enforces weak requirements on the Laplacian spectrum of the latent space.
- Score: 21.445600749028923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While biological intelligence grows organically as new knowledge is gathered throughout life, Artificial Neural Networks forget catastrophically whenever they face a changing training data distribution. Rehearsal-based Continual Learning (CL) approaches have been established as a versatile and reliable solution to overcome this limitation; however, sudden input disruptions and memory constraints are known to alter the consistency of their predictions. We study this phenomenon by investigating the geometric characteristics of the learner's latent space and find that replayed data points of different classes increasingly mix up, interfering with classification. Hence, we propose a geometric regularizer that enforces weak requirements on the Laplacian spectrum of the latent space, promoting a partitioning behavior. Our proposal, called Continual Spectral Regularizer for Incremental Learning (CaSpeR-IL), can be easily combined with any rehearsal-based CL approach and improves the performance of SOTA methods on standard benchmarks.
Related papers
- Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
We present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT.
Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Alignment (S++) framework.
Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Alignment to align the disjoint classification layers in a post-hoc fashion.
arXiv Detail & Related papers (2024-08-15T17:50:07Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
We propose a novel contrastive learning framework to address the challenges of data heterogeneity in federated learning.
Our framework outperforms all existing federated learning approaches by huge margins on the standard benchmarks.
arXiv Detail & Related papers (2024-01-10T04:55:24Z) - Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection [64.4350027428928]
We propose a novel uncertainty-guided class imbalance learning framework for imbalanced social event detection tasks.
Our model significantly improves social event representation and classification tasks in almost all classes, especially those uncertain ones.
arXiv Detail & Related papers (2023-10-30T03:32:04Z) - Conditional Kernel Imitation Learning for Continuous State Environments [9.750698192309978]
We introduce a novel conditional kernel density estimation-based imitation learning framework.
We show consistently superior empirical performance over many state-of-the-art IL algorithms.
arXiv Detail & Related papers (2023-08-24T05:26:42Z) - Neural Collapse Terminus: A Unified Solution for Class Incremental
Learning and Its Variants [166.916517335816]
In this paper, we offer a unified solution to the misalignment dilemma in the three tasks.
We propose neural collapse terminus that is a fixed structure with the maximal equiangular inter-class separation for the whole label space.
Our method holds the neural collapse optimality in an incremental fashion regardless of data imbalance or data scarcity.
arXiv Detail & Related papers (2023-08-03T13:09:59Z) - Cluster-aware Semi-supervised Learning: Relational Knowledge
Distillation Provably Learns Clustering [15.678104431835772]
We take an initial step toward a theoretical understanding of relational knowledge distillation (RKD)
For semi-supervised learning, we demonstrate the label efficiency of RKD through a general framework of cluster-aware learning.
We show that despite the common effect of learning accurate clusterings, RKD facilitates a "global" perspective.
arXiv Detail & Related papers (2023-07-20T17:05:51Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.