論文の概要: White-box Inference Attacks against Centralized Machine Learning and
Federated Learning
- arxiv url: http://arxiv.org/abs/2301.03595v1
- Date: Thu, 15 Dec 2022 07:07:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-15 23:26:16.004613
- Title: White-box Inference Attacks against Centralized Machine Learning and
Federated Learning
- Title(参考訳): 集中型機械学習とフェデレーション学習に対するホワイトボックス推論攻撃
- Authors: Jingyi Ge
- Abstract要約: ニューラルネットワーク層,勾配,勾配ノルム,微調整モデルの違いが,事前知識によるメンバー推論攻撃性能に与える影響を評価する。
その結果,集中型機械学習モデルでは,すべての面において,より深刻なメンバー情報漏洩が見られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of information science and technology, various
industries have generated massive amounts of data, and machine learning is
widely used in the analysis of big data. However, if the privacy of machine
learning applications' customers cannot be guaranteed, it will cause security
threats and losses to users' personal privacy information and service
providers. Therefore, the issue of privacy protection of machine learning has
received wide attention. For centralized machine learning models, we evaluate
the impact of different neural network layers, gradient, gradient norm, and
fine-tuned models on member inference attack performance with prior knowledge;
For the federated learning model, we discuss the location of the attacker in
the target model and its attack mode. The results show that the centralized
machine learning model shows more serious member information leakage in all
aspects, and the accuracy of the attacker in the central parameter server is
significantly higher than the local Inference attacks as participants.
- Abstract(参考訳): 情報科学と技術の発展に伴い、様々な産業が大量のデータを生成し、ビッグデータの分析に機械学習が広く使われている。
しかし、もし機械学習アプリケーションのユーザのプライバシが保証できないのであれば、セキュリティ上の脅威とユーザの個人情報やサービスプロバイダに損失をもたらすことになる。
そのため、機械学習のプライバシー保護の問題に注目が集まっている。
集中型機械学習モデルでは、異なるニューラルネットワーク層、勾配、勾配ノルム、微調整モデルが、事前知識によるメンバー推論攻撃性能に与える影響を評価し、フェデレーション学習モデルでは、ターゲットモデルにおける攻撃者の位置とその攻撃モードについて論じる。
その結果, 集中型機械学習モデルでは, 全ての面において, より深刻な情報漏洩が見られ, 中央パラメータサーバにおける攻撃者の精度は, ローカル推論攻撃よりも有意に高いことがわかった。
関連論文リスト
- Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Holistic risk assessment of inference attacks in machine learning [4.493526120297708]
本稿では,機械学習モデルに対する異なる推論攻撃の全体的リスク評価を行う。
AlexNet、ResNet18、Simple CNNを含む3つのモデルアーキテクチャを使用して、合計12のターゲットモデルが4つのデータセットでトレーニングされている。
論文 参考訳(メタデータ) (2022-12-15T08:14:18Z) - A Survey on Differential Privacy with Machine Learning and Future
Outlook [0.0]
差分プライバシーは、あらゆる攻撃や脆弱性から機械学習モデルを保護するために使用される。
本稿では,2つのカテゴリに分類される差分プライベート機械学習アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-11-19T14:20:53Z) - A Framework for Understanding Model Extraction Attack and Defense [48.421636548746704]
我々は,モデルユーティリティとユーザとのトレードオフと,敵の視点によるプライバシについて検討する。
我々は,このようなトレードオフを定量化し,その理論的特性を分析し,最適な敵攻撃・防衛戦略を理解するための最適化問題を開発する。
論文 参考訳(メタデータ) (2022-06-23T05:24:52Z) - Applied Federated Learning: Architectural Design for Robust and
Efficient Learning in Privacy Aware Settings [0.8454446648908585]
古典的な機械学習パラダイムは、中央にユーザーデータの集約を必要とする。
データの集中化は、内部および外部のセキュリティインシデントのリスクを高めることを含むリスクを引き起こす。
差分プライバシーによるフェデレーション学習は、サーバ側の集中化落とし穴を避けるように設計されている。
論文 参考訳(メタデータ) (2022-06-02T00:30:04Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
トレーニングデータセットを有害にすることができる敵が、このデータセットでトレーニングされたモデルに、他の当事者のプライベート詳細を漏洩させる可能性があることを示す。
私たちの攻撃は、メンバーシップ推論、属性推論、データ抽出に効果的です。
私たちの結果は、機械学習のためのマルチパーティプロトコルにおける暗号化プライバシ保証の関連性に疑問を投げかけました。
論文 参考訳(メタデータ) (2022-03-31T18:06:28Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
この研究は、データ中毒やネットワーク攻撃から学習を保護するために、セキュアな分散アルゴリズムを開発することを目的としている。
我々は,分散サポートベクトルマシン(SVM)を使用する学習者と,トレーニングデータやラベルを変更することができる攻撃者の相反する目標を捉えるためのゲーム理論の枠組みを確立する。
数値的な結果から,分散SVMは異なるタイプの攻撃で失敗する傾向にあり,ネットワーク構造や攻撃能力に強い依存があることが分かる。
論文 参考訳(メタデータ) (2020-03-08T18:54:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。