Look Beyond Bias with Entropic Adversarial Data Augmentation
- URL: http://arxiv.org/abs/2301.03844v1
- Date: Tue, 10 Jan 2023 08:25:24 GMT
- Title: Look Beyond Bias with Entropic Adversarial Data Augmentation
- Authors: Thomas Duboudin (imagine), Emmanuel Dellandr\'ea, Corentin Abgrall,
Gilles H\'enaff, Liming Chen
- Abstract summary: Deep neural networks do not discriminate between spurious and causal patterns, and will only learn the most predictive ones while ignoring the others.
Debiasing methods were developed to make networks robust to such spurious biases but require to know in advance if a dataset is biased.
In this paper, we argue that such samples should not be necessarily needed because the ''hidden'' causal information is often also contained in biased images.
- Score: 4.893694715581673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks do not discriminate between spurious and causal
patterns, and will only learn the most predictive ones while ignoring the
others. This shortcut learning behaviour is detrimental to a network's ability
to generalize to an unknown test-time distribution in which the spurious
correlations do not hold anymore. Debiasing methods were developed to make
networks robust to such spurious biases but require to know in advance if a
dataset is biased and make heavy use of minority counterexamples that do not
display the majority bias of their class. In this paper, we argue that such
samples should not be necessarily needed because the ''hidden'' causal
information is often also contained in biased images. To study this idea, we
propose 3 publicly released synthetic classification benchmarks, exhibiting
predictive classification shortcuts, each of a different and challenging
nature, without any minority samples acting as counterexamples. First, we
investigate the effectiveness of several state-of-the-art strategies on our
benchmarks and show that they do not yield satisfying results on them. Then, we
propose an architecture able to succeed on our benchmarks, despite their
unusual properties, using an entropic adversarial data augmentation training
scheme. An encoder-decoder architecture is tasked to produce images that are
not recognized by a classifier, by maximizing the conditional entropy of its
outputs, and keep as much as possible of the initial content. A precise control
of the information destroyed, via a disentangling process, enables us to remove
the shortcut and leave everything else intact. Furthermore, results competitive
with the state-of-the-art on the BAR dataset ensure the applicability of our
method in real-life situations.
Related papers
- Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
We propose a novel Causality and Independence Enhancement (CIE) framework, applicable to various graph neural networks (GNNs)
Our approach estimates causal and spurious features at the node representation level and mitigates the influence of spurious correlations.
Our approach CIE not only significantly enhances the performance of GNNs but outperforms state-of-the-art debiased node classification methods.
arXiv Detail & Related papers (2023-10-14T13:56:24Z) - Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face
Recognition [107.58227666024791]
Face recognition systems are widely deployed in safety-critical applications, including law enforcement.
They exhibit bias across a range of socio-demographic dimensions, such as gender and race.
Previous works on bias mitigation largely focused on pre-processing the training data.
arXiv Detail & Related papers (2022-10-18T15:46:05Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
Spurious correlations can cause strong biases in deep neural networks, impairing generalization ability.
We propose a self-supervised debiasing framework potentially compatible with unlabeled samples.
Remarkably, the proposed debiasing framework significantly improves the generalization performance of self-supervised learning baselines.
arXiv Detail & Related papers (2022-10-11T08:26:19Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
Deep neural networks are known for their inability to learn robust representations when biases exist in the dataset.
We propose a fully unsupervised debiasing framework, consisting of three steps.
We employ state-of-the-art supervised debiasing techniques to obtain an unbiased model.
arXiv Detail & Related papers (2022-04-26T10:51:50Z) - Dense Out-of-Distribution Detection by Robust Learning on Synthetic
Negative Data [1.7474352892977458]
We show how to detect out-of-distribution anomalies in road-driving scenes and remote sensing imagery.
We leverage a jointly trained normalizing flow due to coverage-oriented learning objective and the capability to generate samples at different resolutions.
The resulting models set the new state of the art on benchmarks for out-of-distribution detection in road-driving scenes and remote sensing imagery.
arXiv Detail & Related papers (2021-12-23T20:35:10Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data
via Generative Bias-transformation [31.944147533327058]
Contrastive Debiasing via Generative Bias-transformation (CDvG)
We propose a novel method, Contrastive Debiasing via Generative Bias-transformation (CDvG), which works without explicit bias labels or bias-free samples.
Our method demonstrates superior performance compared to prior approaches, especially when bias-free samples are scarce or absent.
arXiv Detail & Related papers (2021-12-02T07:16:06Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
We propose a simple but effective debiasing technique in an unsupervised manner.
We perform clustering on the feature embedding space and identify pseudoattributes by taking advantage of the clustering results.
We then employ a novel cluster-based reweighting scheme for learning debiased representation.
arXiv Detail & Related papers (2021-08-06T05:20:46Z) - Nonlinear Invariant Risk Minimization: A Causal Approach [5.63479133344366]
We propose a learning paradigm that enables out-of-distribution generalization in the nonlinear setting.
We show identifiability of the data representation up to very simple transformations.
Extensive experiments on both synthetic and real-world datasets show that our approach significantly outperforms a variety of baseline methods.
arXiv Detail & Related papers (2021-02-24T15:38:41Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
We show that neural networks learn to rely on spurious correlation only when it is "easier" to learn than the desired knowledge.
We propose a failure-based debiasing scheme by training a pair of neural networks simultaneously.
Our method significantly improves the training of the network against various types of biases in both synthetic and real-world datasets.
arXiv Detail & Related papers (2020-07-06T07:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.