論文の概要: Learning with minimal effort: leveraging in silico labeling for cell and
nucleus segmentation
- arxiv url: http://arxiv.org/abs/2301.03914v1
- Date: Tue, 10 Jan 2023 11:35:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 17:21:26.146877
- Title: Learning with minimal effort: leveraging in silico labeling for cell and
nucleus segmentation
- Title(参考訳): 最小限の労力で学習する:細胞と核のセグメンテーションにおけるシリコラベリングの活用
- Authors: Thomas Bonte, Maxence Philbert, Emeline Coleno, Edouard Bertrand,
Arthur Imbert and Thomas Walter
- Abstract要約: In Silico Labeling (ISL) をセグメンテーションタスクの事前学習手法として用いることを提案する。
いくつかのトレーニングセットサイズでセグメンテーション性能を比較することで、このようなスキームは必要なアノテーションの数を大幅に削減できることを示す。
- 参考スコア(独自算出の注目度): 0.6465251961564605
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning provides us with powerful methods to perform nucleus or cell
segmentation with unprecedented quality. However, these methods usually require
large training sets of manually annotated images, which are tedious and
expensive to generate. In this paper we propose to use In Silico Labeling (ISL)
as a pretraining scheme for segmentation tasks. The strategy is to acquire
label-free microscopy images (such as bright-field or phase contrast) along
fluorescently labeled images (such as DAPI or CellMask). We then train a model
to predict the fluorescently labeled images from the label-free microscopy
images. By comparing segmentation performance across several training set
sizes, we show that such a scheme can dramatically reduce the number of
required annotations.
- Abstract(参考訳): ディープラーニングは、前例のない品質で核または細胞分割を実行する強力な方法を提供します。
しかし、これらの手法は通常、手動で注釈付けされた画像の大規模なトレーニングセットを必要とする。
本稿では,分節タスクの事前学習手法としてISL(In Silico Labeling)を提案する。
その戦略は、蛍光標識画像(dapiやcellmaskなど)に沿ってラベルのない顕微鏡画像(明るい磁場や位相コントラストなど)を取得することである。
次に、ラベルのない顕微鏡画像から蛍光標識画像を予測するモデルを訓練する。
いくつかのトレーニングセットサイズでセグメンテーション性能を比較することで、このようなスキームは必要なアノテーションの数を大幅に削減できることを示す。
関連論文リスト
- DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images [105.46086313858062]
DiffKillRは、アーチェタイプマッチングと画像登録タスクの組み合わせとして、セルアノテーションを再構成する新しいフレームワークである。
我々はDiffKillRの理論的性質について論じ、それを3つの顕微鏡タスクで検証し、既存の教師付き・半教師なし・教師なしの手法に対する利点を実証する。
論文 参考訳(メタデータ) (2024-10-04T00:38:29Z) - Predicting fluorescent labels in label-free microscopy images with pix2pix and adaptive loss in Light My Cells challenge [12.373115873950296]
そこで本研究では,Light My Cells チャレンジのためのディープラーニングに基づくサイリコラベリング手法を提案する。
本手法は, シリカラベリングにおける有望な性能を実現する。
論文 参考訳(メタデータ) (2024-06-22T03:10:23Z) - Leverage Weakly Annotation to Pixel-wise Annotation via Zero-shot
Segment Anything Model for Molecular-empowered Learning [4.722512095568422]
AIモデルの構築にはピクセルレベルのアノテーションが必要だ。
本稿では,最近のセグメンテーションモデル(SAM)を弱いボックスアノテーションに応用することにより,ピクセルレベルのデライン化を回避できる可能性を探る。
提案したSAM-Assisted molecular-empowered learning (SAM-L) は,弱いボックスアノテーションを必要とせず,レイアノテータのラベル付け作業の軽減を図っている。
論文 参考訳(メタデータ) (2023-08-10T16:44:24Z) - Distilling Self-Supervised Vision Transformers for Weakly-Supervised
Few-Shot Classification & Segmentation [58.03255076119459]
視覚変換器(ViT)を利用した弱教師付き小ショット画像分類とセグメンテーションの課題に対処する。
提案手法は,自己監督型ViTからトークン表現を抽出し,その相関関係を利用して分類とセグメンテーションの予測を行う。
Pascal-5iとCOCO-20iの実験は、様々な監視設定において大きなパフォーマンス向上を示した。
論文 参考訳(メタデータ) (2023-07-07T06:16:43Z) - Which Pixel to Annotate: a Label-Efficient Nuclei Segmentation Framework [70.18084425770091]
ディープニューラルネットワークは、H&E染色病理像の核インスタンスセグメンテーションに広く応用されている。
通常、類似したパターンと冗長なパターンを含む核画像のデータセットに全てのピクセルをラベル付けするのは非効率で不要である。
そこで本研究では,アノテートするイメージパッチを数個だけ選択し,選択したサンプルからトレーニングセットを増強し,半教師付きで核分割を実現する,新しいフル核分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-20T14:53:26Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - Edge-Based Self-Supervision for Semi-Supervised Few-Shot Microscopy
Image Cell Segmentation [16.94384366469512]
本稿では,未ラベル画像の訓練を自己監督するためのエッジマップの予測を提案する。
実験の結果,従来のトレーニングセットの10%など,少数のアノテートされたイメージだけが,完全なアノテートされたデータベースを1~10ショットで処理するのと同じようなパフォーマンスに達するには十分であることがわかった。
論文 参考訳(メタデータ) (2022-08-03T14:35:00Z) - Self Supervised Learning for Few Shot Hyperspectral Image Classification [57.2348804884321]
HSI分類に自己監督学習(SSL)を活用することを提案する。
最先端のSSLアルゴリズムであるBarlow-Twinsを用いて,ラベルのない画素にエンコーダを事前学習することにより,少数のラベルを持つ正確なモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-06-24T07:21:53Z) - Semi-supervised Contrastive Learning for Label-efficient Medical Image
Segmentation [11.935891325600952]
そこで本研究では,限定的な画素単位のアノテーションを利用して,同じラベルの画素を埋め込み空間に集めるために,教師付き局所的コントラスト損失を提案する。
ラベル付きデータの量が異なるため、我々の手法は、最先端のコントラストベースの手法や他の半教師付き学習技術よりも一貫して優れている。
論文 参考訳(メタデータ) (2021-09-15T16:23:48Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
限られたラベルを持つ医用画像セグメンテーションにおける半教師あり学習の性能向上を目指す。
我々は、ラベルのない画像に対照的な損失を与えることによって、特徴レベルで潜在表現を直接学習する。
我々はMRIとCTのセグメンテーションデータセットの実験を行い、提案手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-27T03:27:58Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。