論文の概要: Modiff: Action-Conditioned 3D Motion Generation with Denoising Diffusion
Probabilistic Models
- arxiv url: http://arxiv.org/abs/2301.03949v2
- Date: Tue, 28 Mar 2023 08:26:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 19:01:13.732150
- Title: Modiff: Action-Conditioned 3D Motion Generation with Denoising Diffusion
Probabilistic Models
- Title(参考訳): Modiff:拡散確率モデルを用いたアクションコンディション3次元運動生成
- Authors: Mengyi Zhao, Mengyuan Liu, Bin Ren, Shuling Dai, and Nicu Sebe
- Abstract要約: 本稿では,現実的で多様な3D骨格に基づく運動生成問題に対処するために,拡散確率モデル(DDPM)の利点を生かした条件付きパラダイムを提案する。
我々はDDPMを用いてカテゴリ的動作で条件付けられた動作列の可変数を合成する先駆的な試みである。
- 参考スコア(独自算出の注目度): 58.357180353368896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion-based generative models have recently emerged as powerful solutions
for high-quality synthesis in multiple domains. Leveraging the bidirectional
Markov chains, diffusion probabilistic models generate samples by inferring the
reversed Markov chain based on the learned distribution mapping at the forward
diffusion process. In this work, we propose Modiff, a conditional paradigm that
benefits from the denoising diffusion probabilistic model (DDPM) to tackle the
problem of realistic and diverse action-conditioned 3D skeleton-based motion
generation. We are a pioneering attempt that uses DDPM to synthesize a variable
number of motion sequences conditioned on a categorical action. We evaluate our
approach on the large-scale NTU RGB+D dataset and show improvements over
state-of-the-art motion generation methods.
- Abstract(参考訳): 拡散に基づく生成モデルは最近、複数の領域における高品質な合成のための強力な解として登場している。
双方向マルコフ連鎖を利用する拡散確率モデルは、前方拡散過程における学習分布写像に基づいて逆マルコフ連鎖を推定することによりサンプルを生成する。
本研究では,現実的で多様な3D骨格に基づく運動生成問題に対処するために,DDPM(Denoising diffusion Probabilistic Model)の利点を生かした条件付きパラダイムであるModiffを提案する。
我々はDDPMを用いてカテゴリ的動作で条件付けられた動作列の可変数を合成する先駆的な試みである。
我々は,大規模NTU RGB+Dデータセットに対するアプローチを評価し,最先端のモーション生成手法の改善を示す。
関連論文リスト
- Towards Detailed Text-to-Motion Synthesis via Basic-to-Advanced
Hierarchical Diffusion Model [60.27825196999742]
本稿では,B2A-HDMと呼ばれる新しい階層型拡散モデルを提案する。
特に、低次元ラテント空間における基本拡散モデルは、テキスト記述と整合した中間偏微分結果を与える。
高次元ラテント空間における高度な拡散モデルは、以下の詳細エンハンス・デノナイジング過程に焦点をあてる。
論文 参考訳(メタデータ) (2023-12-18T06:30:39Z) - DiffFlow: A Unified SDE Framework for Score-Based Diffusion Models and
Generative Adversarial Networks [41.451880167535776]
我々は、明示的生成モデル(SDM)と生成逆数ネット(GAN)のための統一的理論フレームワークを提案する。
統合理論フレームワークでは,GAN や SDM 以外の新しいアルゴリズムを精度の高い推定で提供する DiffFLow のインスタンス化がいくつか導入されている。
論文 参考訳(メタデータ) (2023-07-05T10:00:53Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
カモフラーゲ型物体検出(COD)は、カモフラーゲ型物体とその周囲の類似性が高いため、コンピュータビジョンにおいて難しい課題である。
本研究では,CODを拡散モデルを利用した条件付きマスク生成タスクとして扱う新しいパラダイムを提案する。
カモ拡散(CamoDiffusion)と呼ばれる本手法では,拡散モデルのデノナイズプロセスを用いてマスクの雑音を反復的に低減する。
論文 参考訳(メタデータ) (2023-05-29T07:49:44Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
拡散モデルの高速サンプリング法であるMDD-DDMを提案する。
我々のアプローチは、学習した分布を所定の予算のタイムステップで微調整するために、最大平均離散性(MMD)を使用するという考え方に基づいている。
提案手法は,広範に普及した拡散モデルで要求されるわずかな時間で高品質なサンプルを生成できることが示唆された。
論文 参考訳(メタデータ) (2023-01-19T09:48:07Z) - Structured Denoising Diffusion Models in Discrete State-Spaces [15.488176444698404]
本稿では離散化拡散確率モデル(D3PM)を離散データに適用する。
遷移行列の選択は、画像およびテキスト領域における結果の改善につながる重要な設計決定である。
テキストでは、このモデルクラスは、LM1B上の大きな語彙にスケールしながら、文字レベルのテキスト生成に強い結果をもたらす。
論文 参考訳(メタデータ) (2021-07-07T04:11:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。