論文の概要: Beyond Graph Convolutional Network: An Interpretable
Regularizer-centered Optimization Framework
- arxiv url: http://arxiv.org/abs/2301.04318v1
- Date: Wed, 11 Jan 2023 05:51:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 14:10:13.676477
- Title: Beyond Graph Convolutional Network: An Interpretable
Regularizer-centered Optimization Framework
- Title(参考訳): beyond graph convolutional network: 解釈可能な正規化中心最適化フレームワーク
- Authors: Shiping Wang, Zhihao Wu, Yuhong Chen, Yong Chen
- Abstract要約: グラフ畳み込みネットワーク(GCN)は、性能向上と強力な一般化により、広く注目を集めている。
本稿では,ほとんどのGCNを解釈可能な正規化器中心最適化フレームワークを提案する。
提案フレームワークでは,グラフデータからトポロジとセマンティック構造を捉えるために,二重正規化グラフ畳み込みネットワーク(dubed tsGCN)を考案した。
- 参考スコア(独自算出の注目度): 12.116373546916078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional networks (GCNs) have been attracting widespread
attentions due to their encouraging performance and powerful generalizations.
However, few work provide a general view to interpret various GCNs and guide
GCNs' designs. In this paper, by revisiting the original GCN, we induce an
interpretable regularizer-centerd optimization framework, in which by building
appropriate regularizers we can interpret most GCNs, such as APPNP, JKNet,
DAGNN, and GNN-LF/HF. Further, under the proposed framework, we devise a
dual-regularizer graph convolutional network (dubbed tsGCN) to capture
topological and semantic structures from graph data. Since the derived learning
rule for tsGCN contains an inverse of a large matrix and thus is
time-consuming, we leverage the Woodbury matrix identity and low-rank
approximation tricks to successfully decrease the high computational complexity
of computing infinite-order graph convolutions. Extensive experiments on eight
public datasets demonstrate that tsGCN achieves superior performance against
quite a few state-of-the-art competitors w.r.t. classification tasks.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、性能向上と強力な一般化により、広く注目を集めている。
しかし、様々なGCNを解釈し、GCNの設計を導くための一般的な見解を提供する研究はほとんどない。
本稿では、元のGCNを再検討することにより、適切な正規化器を構築することにより、APPNP、JKNet、DAGNN、GNN-LF/HFなどのほとんどのGCNを解釈できる、解釈可能な正規化器中心最適化フレームワークを誘導する。
さらに,提案フレームワークでは,グラフデータからトポロジとセマンティック構造を捉えるために,二重正規化グラフ畳み込みネットワーク(dubed tsGCN)を考案した。
tsGCNの学習規則は大きな行列の逆数を含み、時間を要するので、Woodbury行列のアイデンティティと低ランク近似のトリックを利用して、無限次グラフ畳み込み計算の計算複雑性を小さくする。
8つの公開データセットに対する大規模な実験は、tsGCNが最先端の競合であるw.r.t.分類タスクに対して優れたパフォーマンスを達成していることを示している。
関連論文リスト
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Graph Contrastive Learning with Generative Adversarial Network [35.564028359355596]
グラフ生成逆数ネットワーク(GAN)はグラフコントラスト学習(GCL)のためのビューの分布を学習する
本稿では,グラフ表現学習のためのジェネレーティブ・コントラスト学習ネットワークであるGACNを提案する。
GACNはGCLの高品質な拡張ビューを生成することができ、12の最先端のベースライン手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-01T13:28:24Z) - Multi-scale Graph Convolutional Networks with Self-Attention [2.66512000865131]
グラフ畳み込みネットワーク(GCN)は,様々なグラフ構造データを扱うための優れた学習能力を実現している。
GCNsの重要な問題として, 過平滑化現象が解決され, 検討が続けられている。
本稿では,GCNの設計に自己認識機構とマルチスケール情報を取り入れた2つの新しいマルチスケールGCNフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-04T04:41:24Z) - SLGCN: Structure Learning Graph Convolutional Networks for Graphs under
Heterophily [5.619890178124606]
本稿では2つの側面から問題を緩和する構造学習グラフ畳み込みネットワーク(SLGCN)を提案する。
具体的には、全ての類似ノードから特徴表現を効率的に集約するために、アンカーを用いた効率的なスペクトルクラスタリング(ESC-ANCH)を設計する。
幅広いベンチマークデータセットの実験結果は、提案されたSLGCNが、最先端のGNNよりも優れていることを示している。
論文 参考訳(メタデータ) (2021-05-28T13:00:38Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Bi-GCN: Binary Graph Convolutional Network [57.733849700089955]
ネットワークパラメータと入力ノードの特徴を二項化するバイナリグラフ畳み込みネットワーク(Bi-GCN)を提案する。
我々のBi-GCNは、ネットワークパラメータと入力データの両方で平均30倍のメモリ消費を削減でき、推論速度を平均47倍に加速できる。
論文 参考訳(メタデータ) (2020-10-15T07:26:23Z) - DeeperGCN: All You Need to Train Deeper GCNs [66.64739331859226]
グラフ畳み込みネットワーク(GCN)はグラフ上での表現学習の力で注目されている。
非常に深いレイヤを積み重ねることのできる畳み込みニューラルネットワーク(CNN)とは異なり、GCNはより深く進むと、勾配の消失、過度なスムース化、過度に適合する問題に悩まされる。
本稿では,非常に深いGCNを正常かつ確実に訓練できるDeeperGCNを提案する。
論文 参考訳(メタデータ) (2020-06-13T23:00:22Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
グラフ畳み込みネットワーク(GCN)は,構造認識の特徴を抽出することによって,グラフデータ処理において有望な結果を示した。
本稿では、幾何学的散乱変換と残差畳み込みによる従来のGCNの増大を提案する。
前者はグラフ信号の帯域通過フィルタリングが可能であり、GCNでしばしば発生する過度な過度な処理を緩和する。
論文 参考訳(メタデータ) (2020-03-18T18:03:08Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
グラフ畳み込みニューラルネットワーク(GCN)は近年,グラフに基づく半教師付き半教師付き分類において有望な結果を示した。
グラフに基づく半教師付き学習のためのGCN(GPGC)を用いたGP回帰モデルを提案する。
GPGCを評価するための広範囲な実験を行い、他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-26T10:02:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。