An Efficient Approach to the Online Multi-Agent Path Finding Problem by
Using Sustainable Information
- URL: http://arxiv.org/abs/2301.04446v1
- Date: Wed, 11 Jan 2023 13:04:35 GMT
- Title: An Efficient Approach to the Online Multi-Agent Path Finding Problem by
Using Sustainable Information
- Authors: Mingkai Tang, Boyi Liu, Yuanhang Li, Hongji Liu, Ming Liu, Lujia Wang
- Abstract summary: Multi-agent path finding (MAPF) is the problem of moving agents to the goal without collision.
We propose a three-level approach to solve online MAPF utilizing sustainable information.
Our algorithm can be 1.48 times faster than SOTA on average under different agent number settings.
- Score: 10.367412630626834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent path finding (MAPF) is the problem of moving agents to the goal
vertex without collision. In the online MAPF problem, new agents may be added
to the environment at any time, and the current agents have no information
about future agents. The inability of existing online methods to reuse previous
planning contexts results in redundant computation and reduces algorithm
efficiency. Hence, we propose a three-level approach to solve online MAPF
utilizing sustainable information, which can decrease its redundant
calculations. The high-level solver, the Sustainable Replan algorithm (SR),
manages the planning context and simulates the environment. The middle-level
solver, the Sustainable Conflict-Based Search algorithm (SCBS), builds a
conflict tree and maintains the planning context. The low-level solver, the
Sustainable Reverse Safe Interval Path Planning algorithm (SRSIPP), is an
efficient single-agent solver that uses previous planning context to reduce
duplicate calculations. Experiments show that our proposed method has
significant improvement in terms of computational efficiency. In one of the
test scenarios, our algorithm can be 1.48 times faster than SOTA on average
under different agent number settings.
Related papers
- Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
Multi-Agent Pathfinding problem involves finding a set of conflict-free paths for a group of agents confined to a graph.
In this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally.
We propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks.
arXiv Detail & Related papers (2023-12-26T06:57:22Z) - Learn to Follow: Decentralized Lifelong Multi-agent Pathfinding via
Planning and Learning [46.354187895184154]
Multi-agent Pathfinding (MAPF) problem generally asks to find a set of conflict-free paths for a set of agents confined to a graph.
In this work, we investigate the decentralized MAPF setting, when the central controller that posses all the information on the agents' locations and goals is absent.
We focus on the practically important lifelong variant of MAPF, which involves continuously assigning new goals to the agents upon arrival to the previous ones.
arXiv Detail & Related papers (2023-10-02T13:51:32Z) - Distributed Allocation and Scheduling of Tasks with Cross-Schedule
Dependencies for Heterogeneous Multi-Robot Teams [2.294915015129229]
We present a distributed task allocation and scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal and precedence constraints.
An application of the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.
arXiv Detail & Related papers (2021-09-07T13:44:28Z) - Prioritized SIPP for Multi-Agent Path Finding With Kinematic Constraints [0.0]
Multi-Agent Path Finding (MAPF) is a long-standing problem in Robotics and Artificial Intelligence.
We present a method that mitigates this issue to a certain extent.
arXiv Detail & Related papers (2021-08-11T10:42:11Z) - Compilation-based Solvers for Multi-Agent Path Finding: a Survey,
Discussion, and Future Opportunities [7.766921168069532]
We show the lessons learned from past developments and current trends in the topic and discuss its wider impact.
Two major approaches to optimal MAPF solving include (1) dedicated search-based methods, which solve MAPF directly, and (2) compilation-based methods that reduce a MAPF instance to an instance in a different well established formalism.
arXiv Detail & Related papers (2021-04-23T20:13:12Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.