Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints
- URL: http://arxiv.org/abs/2005.13109v3
- Date: Sat, 25 Jul 2020 19:30:21 GMT
- Title: Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints
- Authors: Shushman Choudhury, Jayesh K. Gupta, Mykel J. Kochenderfer, Dorsa
Sadigh, Jeannette Bohg
- Abstract summary: We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
- Score: 52.58352707495122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of dynamically allocating tasks to multiple agents
under time window constraints and task completion uncertainty. Our objective is
to minimize the number of unsuccessful tasks at the end of the operation
horizon. We present a multi-robot allocation algorithm that decouples the key
computational challenges of sequential decision-making under uncertainty and
multi-agent coordination and addresses them in a hierarchical manner. The lower
layer computes policies for individual agents using dynamic programming with
tree search, and the upper layer resolves conflicts in individual plans to
obtain a valid multi-agent allocation. Our algorithm, Stochastic Conflict-Based
Allocation (SCoBA), is optimal in expectation and complete under some
reasonable assumptions. In practice, SCoBA is computationally efficient enough
to interleave planning and execution online. On the metric of successful task
completion, SCoBA consistently outperforms a number of baseline methods and
shows strong competitive performance against an oracle with complete lookahead.
It also scales well with the number of tasks and agents. We validate our
results over a wide range of simulations on two distinct domains: multi-arm
conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
Related papers
- Robust Multi-Task Learning with Excess Risks [24.695243608197835]
Multi-task learning (MTL) considers learning a joint model for multiple tasks by optimizing a convex combination of all task losses.
Existing methods use an adaptive weight updating scheme, where task weights are dynamically adjusted based on their respective losses to prioritize difficult tasks.
We propose Multi-Task Learning with Excess Risks (ExcessMTL), an excess risk-based task balancing method that updates the task weights by their distances to convergence.
arXiv Detail & Related papers (2024-02-03T03:46:14Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
We propose a combined task and motion planning approach to optimize sequencing, assignment, and execution of tasks.
The framework relies on decoupling tasks and actions, where an action is one possible geometric realization of a symbolic task.
We demonstrate the approach effectiveness in a collaborative manufacturing scenario, in which a robotic arm and a human worker shall assemble a mosaic.
arXiv Detail & Related papers (2023-03-27T01:50:45Z) - Robust Subtask Learning for Compositional Generalization [20.54144051436337]
We focus on the problem of training subtask policies in a way that they can be used to perform any task.
We aim to maximize the worst-case performance over all tasks as opposed to the average-case performance.
arXiv Detail & Related papers (2023-02-06T18:19:25Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
We propose a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints.
We propose a disentangled training of two hypernetworks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights.
arXiv Detail & Related papers (2022-03-28T17:56:40Z) - Optimal Multi-Agent Path Finding for Precedence Constrained Planning
Tasks [0.7742297876120561]
We consider an extension to this problem, Precedence Constrained Multi-Agent Path Finding (PC-MAPF)
We propose a novel algorithm, Precedence Constrained Conflict Based Search (PC-CBS), which finds makespan-optimal solutions for this class of problems.
We benchmark the performance of this algorithm over various warehouse assembly, and multi-agent pickup and delivery tasks, and use it to evaluate the sub-optimality of a recently proposed efficient baseline.
arXiv Detail & Related papers (2022-02-08T07:26:45Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
A major challenge in optimizing a multi-task model is the conflicting gradients.
We introduce Conflict-Averse Gradient descent (CAGrad) which minimizes the average loss function.
CAGrad balances the objectives automatically and still provably converges to a minimum over the average loss.
arXiv Detail & Related papers (2021-10-26T22:03:51Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Distributed Allocation and Scheduling of Tasks with Cross-Schedule
Dependencies for Heterogeneous Multi-Robot Teams [2.294915015129229]
We present a distributed task allocation and scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal and precedence constraints.
An application of the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.
arXiv Detail & Related papers (2021-09-07T13:44:28Z) - Scalable Anytime Planning for Multi-Agent MDPs [37.69939216970677]
We present a scalable tree search planning algorithm for large multi-agent sequential decision problems that require dynamic collaboration.
Our algorithm comprises three elements: online planning with Monte Carlo Tree Search (MCTS), factored representations of local agent interactions with coordination graphs, and the iterative Max-Plus method for joint action selection.
arXiv Detail & Related papers (2021-01-12T22:50:17Z) - Hierarchical Reinforcement Learning as a Model of Human Task
Interleaving [60.95424607008241]
We develop a hierarchical model of supervisory control driven by reinforcement learning.
The model reproduces known empirical effects of task interleaving.
The results support hierarchical RL as a plausible model of task interleaving.
arXiv Detail & Related papers (2020-01-04T17:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.