Ultratight confinement of atoms in a Rydberg empowered optical lattice
- URL: http://arxiv.org/abs/2301.04450v3
- Date: Wed, 23 Oct 2024 05:59:03 GMT
- Title: Ultratight confinement of atoms in a Rydberg empowered optical lattice
- Authors: Mohammadsadegh Khazali,
- Abstract summary: This article presents a novel approach for creating an atomic optical lattice with a sub-wavelength spatial structure.
The potential is generated by leveraging the nonlinear optical response of three-level Rydberg-dressed atoms.
The development of these ultra-narrow trapping techniques holds great promise for applications such as Rydberg-Fermi gates, atomtronics, quantum walks, Hubbard models, and neutral-atom quantum simulation.
- Score: 0.0
- License:
- Abstract: Optical lattices serve as fundamental building blocks for atomic quantum technology. However, the scale and resolution of these lattices are diffraction-limited to the light wavelength. In conventional lattices, achieving tight confinement of single sites requires high laser intensity, which unfortunately leads to reduced coherence due to increased scattering. This article presents a novel approach for creating an atomic optical lattice with a sub-wavelength spatial structure. The potential is generated by leveraging the nonlinear optical response of three-level Rydberg-dressed atoms, which allows us to overcome the diffraction limit of the driving fields. The resulting lattice comprises a three-dimensional array of ultra-narrow Lorentzian wells over nanometer scales. These unprecedented scales can now be accessed through a hybrid scheme that combines the dipolar interaction and optical twist of atomic eigenstates. The interaction-induced two-body resonance that forms the trapping potential, only occurs at a peculiar laser intensity, localizing the trap sites to ultra-narrow regions over the standing-wave driving field. The feasibility study shows that single-atom confinement in Lorentzian sites with 3nm width, and 37MHz depth are realizable with available lasers. The development of these ultra-narrow trapping techniques holds great promise for applications such as Rydberg-Fermi gates, atomtronics, quantum walks, Hubbard models, and neutral-atom quantum simulation.
Related papers
- Electrically defined quantum dots for bosonic excitons [0.0]
We show electrically-defined quantum dots for excitons in monolayer semiconductors.
Our work paves the way for realizing quantum confined bosonic modes where nonlinear response would arise exclusively from exciton--exciton interactions.
arXiv Detail & Related papers (2024-02-29T15:45:22Z) - State-Insensitive Trapping of Alkaline-Earth Atoms in a Nanofiber-Based
Optical Dipole Trap [0.0]
We demonstrate a state-insensitive optical dipole trap for strontium-88, an alkaline-earth atom, using the evanescent fields of a nanotapered optical fiber.
This work also lays the foundation for developing versatile and robust matter-wave atomtronic circuits over nanophotonic waveguides.
arXiv Detail & Related papers (2022-11-08T04:54:50Z) - Single atom in a superoscillatory optical trap [0.0]
We report trapping of single ultracold atom in an optical trap that can be continuously tuned from a standard Airy focus to a subwavelength hotspot smaller than the usual Abbe's diffraction limit.
We argue that superoscillatory trapping and continuous potential tuning offer not only a way to generate compact and tenable ensembles of trapped atoms for quantum simulators but will also be useful in single molecule quantum chemistry.
arXiv Detail & Related papers (2022-11-01T04:54:33Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Quantum simulation with fully coherent dipole--dipole-interactions
mediated by three-dimensional subwavelength atomic arrays [0.0]
Quantum simulators employing cold atoms are among the most promising approaches to tackle quantum many-body problems.
Here, we propose to use a simple cubic three-dimensional array of atoms to produce an omnidirectional bandgap for light.
We show that it enables coherent, dissipation-free interactions between embedded impurities.
arXiv Detail & Related papers (2020-12-23T16:26:20Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Objective-free excitation of quantum emitters with a laser-written micro
parabolic mirror [0.0]
A 3.2 um wide parabolic mirror is fabricated by direct laser writing on CdSe/CdS colloidal quantum dots.
It is capable of focusing the excitation light to a sub-wavelength spot and to extract the generated emission by collimating it into a narrow beam.
arXiv Detail & Related papers (2020-03-06T09:06:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.