論文の概要: Fast spline detection in high density microscopy data
- arxiv url: http://arxiv.org/abs/2301.04460v2
- Date: Fri, 13 Jan 2023 10:05:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 11:56:58.271273
- Title: Fast spline detection in high density microscopy data
- Title(参考訳): 高密度顕微鏡データにおける高速スプライン検出
- Authors: Albert Alonso and Julius B. Kirkegaard
- Abstract要約: 多生物系の顕微鏡的研究において、衝突と重なりの問題は依然として困難である。
そこで,本研究では,一般的なモチーフと重なり合うスプラインの正確な形状軌跡を抽出する,エンドツーエンドの深層学習手法を開発した。
線虫Caenorhabditis elegansの密集実験における使用性の設定と実証を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer-aided analysis of biological microscopy data has seen a massive
improvement with the utilization of general-purpose deep learning techniques.
Yet, in microscopy studies of multi-organism systems, the problem of collision
and overlap remains challenging. This is particularly true for systems composed
of slender bodies such as crawling nematodes, swimming spermatozoa, or the
beating of eukaryotic or prokaryotic flagella. Here, we develop a novel
end-to-end deep learning approach to extract precise shape trajectories of
generally motile and overlapping splines. Our method works in low resolution
settings where feature keypoints are hard to define and detect. Detection is
fast and we demonstrate the ability to track thousands of overlapping organisms
simultaneously. While our approach is agnostic to area of application, we
present it in the setting of and exemplify its usability on dense experiments
of crawling Caenorhabditis elegans. The model training is achieved purely on
synthetic data, utilizing a physics-based model for nematode motility, and we
demonstrate the model's ability to generalize from simulations to experimental
videos.
- Abstract(参考訳): 生体顕微鏡データのコンピュータ支援分析は,汎用深層学習技術の利用により大幅に改善されている。
しかし、多分子系の顕微鏡的研究では、衝突と重なりの問題は依然として困難である。
これは特に、線虫をクロールしたり、精子を泳いだり、真核生物や原核生物の鞭毛を叩くような細い体から成るシステムに当てはまる。
そこで,本研究では,一般的なモチーフと重なり合うスプラインの正確な形状軌跡を抽出する,エンドツーエンドの深層学習手法を開発した。
提案手法は,特徴キーポイントの定義や検出が難しい低解像度設定で動作する。
検出は高速で、同時に何千もの重なり合う生物を追跡する能力を示す。
我々のアプローチは応用分野に依存しないが,crawling caenorhabditis elegansの密集した実験において,その使用性の設定と実例を示す。
モデルトレーニングは、線虫運動の物理モデルを用いて、純粋に合成データに基づいて達成され、シミュレーションから実験ビデオまでモデルを一般化する能力を実証する。
関連論文リスト
- FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures [4.9246627979592725]
神経系の体積光顕微鏡画像におけるニューロンのセグメンテーションは、神経科学における画期的な研究を可能にする。
しかし、マルチニューロン光顕微鏡のデータは、インスタンスセグメンテーションのタスクにとって非常に難しい特性を示している。
私たちはFlyLight Instance Benchmark(FISBe)データセットをリリースしました。
論文 参考訳(メタデータ) (2024-03-29T19:51:34Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
哺乳類網膜で観察される生体受容野を,深部核が効果的に複製していることを示す証拠を提示する。
生体受容の分野からインスピレーションを得る手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T18:06:22Z) - Deep Learning of Crystalline Defects from TEM images: A Solution for the
Problem of "Never Enough Training Data" [0.0]
In-situ TEM実験は、転位がどのように振る舞うか、動きについて重要な洞察を与えることができる。
個々のビデオフレームの分析は有用な洞察を提供するが、自動識別の能力によって制限される。
本研究では,転位セグメンテーションのための合成トレーニングデータを生成するパラメトリックモデルを開発した。
論文 参考訳(メタデータ) (2023-07-12T17:37:46Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
本研究は,簡単な学習セットから複雑な露光の学習近似を提案する。
合成センサ応答に対するこのアプローチは, 分布外の化学分析物の検出を驚くほど改善することを示した。
論文 参考訳(メタデータ) (2023-02-09T20:19:57Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Physical model simulator-trained neural network for computational 3D
phase imaging of multiple-scattering samples [1.112751058850223]
サンプルコントラストを均質化する新しいモデルベースデータ正規化前処理法を開発した。
上皮扁平上皮細胞およびCaenorhabditis elegans wormsの実験的測定におけるこのフレームワークの能力を示す。
論文 参考訳(メタデータ) (2021-03-29T17:43:56Z) - Synthetic Image Rendering Solves Annotation Problem in Deep Learning
Nanoparticle Segmentation [5.927116192179681]
レンダリングソフトウェアを使用することで、リアルで合成されたトレーニングデータを生成して、最先端の深層ニューラルネットワークをトレーニングできることが示される。
有害な金属酸化物ナノ粒子アンサンブルに対する人為的アノテーションに匹敵するセグメンテーション精度を導出する。
論文 参考訳(メタデータ) (2020-11-20T17:05:36Z) - Exploring the potential of transfer learning for metamodels of
heterogeneous material deformation [0.0]
転送学習は,低忠実度シミュレーションデータとシミュレーションデータの両方を利用することができることを示す。
我々は、大きな変形を受ける異種材料のオープンソースベンチマークデータセットであるMechanical MNISTを拡張した。
これらの低忠実度シミュレーション結果に基づいて学習したメタモデルに蓄積された知識の伝達は、高忠実度シミュレーションの結果を予測するのに使用されるメタモデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2020-10-28T12:43:46Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。