論文の概要: The Role of Interactive Visualization in Explaining (Large) NLP Models:
from Data to Inference
- arxiv url: http://arxiv.org/abs/2301.04528v1
- Date: Wed, 11 Jan 2023 15:46:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 17:10:42.671966
- Title: The Role of Interactive Visualization in Explaining (Large) NLP Models:
from Data to Inference
- Title(参考訳): 説明(大規模)NLPモデルにおけるインタラクティブ可視化の役割:データから推論まで
- Authors: Richard Brath, Daniel Keim, Johannes Knittel, Shimei Pan, Pia
Sommerauer, Hendrik Strobelt
- Abstract要約: 対話型可視化がNLPモデル(XNLP)を説明する上で果たす役割について論じる。
我々はXNLPの具体例を可視化するいくつかのユースケースを提示する。
- 参考スコア(独自算出の注目度): 22.087045584991444
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With a constant increase of learned parameters, modern neural language models
become increasingly more powerful. Yet, explaining these complex model's
behavior remains a widely unsolved problem. In this paper, we discuss the role
interactive visualization can play in explaining NLP models (XNLP). We motivate
the use of visualization in relation to target users and common NLP pipelines.
We also present several use cases to provide concrete examples on XNLP with
visualization. Finally, we point out an extensive list of research
opportunities in this field.
- Abstract(参考訳): 学習パラメータの絶え間ない増加により、現代のニューラルネットワークモデルはますます強力になる。
しかし、これらの複雑なモデルの振る舞いを説明することは広く未解決の問題である。
本稿では,対話型可視化がNLPモデル(XNLP)を説明する上で果たす役割について論じる。
我々は、ターゲットユーザと一般的なNLPパイプラインとの関係における可視化の利用を動機付けている。
また、XNLPの具体例を可視化するいくつかのユースケースも提示する。
最後に,この分野の研究機会の広範なリストを示す。
関連論文リスト
- Making Long-Context Language Models Better Multi-Hop Reasoners [42.09676404515287]
本稿では,各アサーションに対するアトリビューションの供給を促す新しいアプローチであるReasoning with Attributionsを紹介する。
我々は,プロプライエタリモデルとオープンソースモデルの両方を用いて,3つのマルチホップデータセットの実験を通じてアプローチを検証する。
本モデルでは,ChatGPT や Claude-Instant などの独自の LM を並列化して,マルチホップ推論ベンチマーク上での競合性能を実現する。
論文 参考訳(メタデータ) (2024-08-06T15:06:40Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - A Detailed Study of Interpretability of Deep Neural Network based Top
Taggers [3.8541104292281805]
説明可能なAI(XAI)の最近の進歩により、研究者はディープニューラルネットワーク(DNN)の内部動作を探索できる。
大型ハドロン衝突型加速器(LHC)における高エネルギー陽子-陽子衝突におけるトップクォーク崩壊からのジェットの解釈可能性について検討する。
本研究は,既存のXAI手法の大きな落とし穴を明らかにし,これらのモデルの一貫性と意味のある解釈をいかに克服できるかを説明する。
論文 参考訳(メタデータ) (2022-10-09T23:02:42Z) - Benchmarking Compositionality with Formal Languages [64.09083307778951]
我々は,NLPにおける大規模ニューラルモデルが,データから学習しながら,原始概念をより大規模な新しい組み合わせに組み込むことができるかどうかを検討する。
多くのトランスデューサをランダムにサンプリングすることにより、ニューラルネットワークによる合成関係の学習性に寄与する特性を探索する。
モデルは完全に関係を学習するか全く学習しないかが分かる。鍵となるのはトランジッションカバレッジであり、トランジッション毎に400の例でソフトな学習可能性制限を設定する。
論文 参考訳(メタデータ) (2022-08-17T10:03:18Z) - Interactively Generating Explanations for Transformer Language Models [14.306470205426526]
トランスフォーマー言語モデルは、多くのNLPタスクにおいて最先端である。
最近の手法はブラックボックスモデルに対する解釈可能性と説明可能性を提供することを目的としている。
モデルアーキテクチャに直接組み込まれたプロトタイプネットワークを使うことを強調した。
論文 参考訳(メタデータ) (2021-09-02T11:34:29Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
影響関数は、影響力のあるトレーニング例を特定することによって、モデルの判断を説明する。
本稿では,代表課題における影響関数と共通単語順応法の比較を行う。
我々は,学習データ中の成果物を明らかにすることができる影響関数に基づく新しい尺度を開発した。
論文 参考訳(メタデータ) (2020-05-14T00:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。