Causal Abstraction: A Theoretical Foundation for Mechanistic Interpretability
- URL: http://arxiv.org/abs/2301.04709v3
- Date: Wed, 7 Aug 2024 18:31:10 GMT
- Title: Causal Abstraction: A Theoretical Foundation for Mechanistic Interpretability
- Authors: Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang, Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, Thomas Icard,
- Abstract summary: Causal abstraction provides a theoretical foundation for mechanistic interpretability.
Our contributions are generalizing the theory of causal abstraction from mechanism replacement to arbitrary mechanism transformation.
- Score: 30.76910454663951
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal abstraction provides a theoretical foundation for mechanistic interpretability, the field concerned with providing intelligible algorithms that are faithful simplifications of the known, but opaque low-level details of black box AI models. Our contributions are (1) generalizing the theory of causal abstraction from mechanism replacement (i.e., hard and soft interventions) to arbitrary mechanism transformation (i.e., functionals from old mechanisms to new mechanisms), (2) providing a flexible, yet precise formalization for the core concepts of modular features, polysemantic neurons, and graded faithfulness, and (3) unifying a variety of mechanistic interpretability methodologies in the common language of causal abstraction, namely activation and path patching, causal mediation analysis, causal scrubbing, causal tracing, circuit analysis, concept erasure, sparse autoencoders, differential binary masking, distributed alignment search, and activation steering.
Related papers
- Causal Abstraction in Model Interpretability: A Compact Survey [5.963324728136442]
causal abstraction provides a principled approach to understanding and explaining the causal mechanisms underlying model behavior.
This survey paper delves into the realm of causal abstraction, examining its theoretical foundations, practical applications, and implications for the field of model interpretability.
arXiv Detail & Related papers (2024-10-26T12:24:28Z) - A Mechanistic Interpretation of Syllogistic Reasoning in Auto-Regressive Language Models [13.59675117792588]
Recent studies on logical reasoning in auto-regressive Language Models (LMs) have sparked a debate on whether such models can learn systematic reasoning principles during pre-training.
This paper presents a mechanistic interpretation of syllogistic reasoning in LMs to further enhance our understanding of internal dynamics.
arXiv Detail & Related papers (2024-08-16T07:47:39Z) - Mechanistically Interpreting a Transformer-based 2-SAT Solver: An Axiomatic Approach [28.336108192282737]
Mechanistic interpretability aims to reverse engineer the computation performed by a neural network in terms of its internal components.
We give a set of axioms that formally characterize a mechanistic interpretation as a description that approximately captures the semantics of the neural network under analysis.
We present evidence to support that the mechanistic interpretation of the analyzed model indeed satisfies the stated axioms.
arXiv Detail & Related papers (2024-07-18T15:32:44Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
Investigating internal reasoning mechanisms of large language models can help us design better model architectures and training strategies.
In this study, we constructed a symbolic dataset to investigate the mechanisms by which Transformer models employ vertical thinking strategy.
We proposed a random matrix-based algorithm to enhance the model's reasoning ability, resulting in a 75% reduction in the training time required for the GPT-2 model.
arXiv Detail & Related papers (2024-05-24T07:41:26Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
This approach allows for the computer-assisted analysis of abstract dialectical frameworks.
Exemplary applications include the formal analysis and verification of meta-theoretical properties.
arXiv Detail & Related papers (2023-12-08T09:32:26Z) - AS-XAI: Self-supervised Automatic Semantic Interpretation for CNN [5.42467030980398]
We propose a self-supervised automatic semantic interpretable artificial intelligence (AS-XAI) framework.
It utilizes transparent embedding semantic extraction spaces and row-centered principal component analysis (PCA) for global semantic interpretation of model decisions.
The proposed approach offers broad fine-grained practical applications, including shared semantic interpretation under out-of-distribution categories.
arXiv Detail & Related papers (2023-12-02T10:06:54Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Finding Alignments Between Interpretable Causal Variables and
Distributed Neural Representations [62.65877150123775]
Causal abstraction is a promising theoretical framework for explainable artificial intelligence.
Existing causal abstraction methods require a brute-force search over alignments between the high-level model and the low-level one.
We present distributed alignment search (DAS), which overcomes these limitations.
arXiv Detail & Related papers (2023-03-05T00:57:49Z) - Plausible Reasoning about EL-Ontologies using Concept Interpolation [27.314325986689752]
We propose an inductive mechanism which is based on a clear model-theoretic semantics, and can thus be tightly integrated with standard deductive reasoning.
We focus on inference, a powerful commonsense reasoning mechanism which is closely related to cognitive models of category-based induction.
arXiv Detail & Related papers (2020-06-25T14:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.