The Buffer Mechanism for Multi-Step Information Reasoning in Language Models
- URL: http://arxiv.org/abs/2405.15302v2
- Date: Tue, 15 Oct 2024 07:26:33 GMT
- Title: The Buffer Mechanism for Multi-Step Information Reasoning in Language Models
- Authors: Zhiwei Wang, Yunji Wang, Zhongwang Zhang, Zhangchen Zhou, Hui Jin, Tianyang Hu, Jiacheng Sun, Zhenguo Li, Yaoyu Zhang, Zhi-Qin John Xu,
- Abstract summary: Investigating internal reasoning mechanisms of large language models can help us design better model architectures and training strategies.
In this study, we constructed a symbolic dataset to investigate the mechanisms by which Transformer models employ vertical thinking strategy.
We proposed a random matrix-based algorithm to enhance the model's reasoning ability, resulting in a 75% reduction in the training time required for the GPT-2 model.
- Score: 52.77133661679439
- License:
- Abstract: Large language models have consistently struggled with complex reasoning tasks, such as mathematical problem-solving. Investigating the internal reasoning mechanisms of these models can help us design better model architectures and training strategies, ultimately enhancing their reasoning capability. In this study, we constructed a symbolic dataset to investigate the mechanisms by which Transformer models employ vertical thinking strategy based on their inherent structure and horizontal thinking strategy based on Chain of Thought to achieve multi-step reasoning. We introduced the concept of buffer mechanism: the model stores various information in distinct buffers and selectively extracts them through the query-key matrix. We proposed a random matrix-based algorithm to enhance the model's reasoning ability, resulting in a 75% reduction in the training time required for the GPT-2 model to achieve generalization capability on the PrOntoQA dataset. These findings provide new insights into understanding the mechanisms of large language models.
Related papers
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.
We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)
We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Mechanistic Unveiling of Transformer Circuits: Self-Influence as a Key to Model Reasoning [9.795934690403374]
It is still unclear which multi-step reasoning mechanisms are used by language models to solve such tasks.
We employ circuit analysis and self-influence functions to evaluate the changing importance of each token throughout the reasoning process.
We demonstrate that the underlying circuits reveal a human-interpretable reasoning process used by the model.
arXiv Detail & Related papers (2025-02-13T07:19:05Z) - On the Reasoning Capacity of AI Models and How to Quantify It [0.0]
Large Language Models (LLMs) have intensified the debate surrounding the fundamental nature of their reasoning capabilities.
While achieving high performance on benchmarks such as GPQA and MMLU, these models exhibit limitations in more complex reasoning tasks.
We propose a novel phenomenological approach that goes beyond traditional accuracy metrics to probe the underlying mechanisms of model behavior.
arXiv Detail & Related papers (2025-01-23T16:58:18Z) - Cliqueformer: Model-Based Optimization with Structured Transformers [102.55764949282906]
Large neural networks excel at prediction tasks, but their application to design problems, such as protein engineering or materials discovery, requires solving offline model-based optimization (MBO) problems.
We present Cliqueformer, a transformer-based architecture that learns the black-box function's structure through functional graphical models (FGM)
Across various domains, including chemical and genetic design tasks, Cliqueformer demonstrates superior performance compared to existing methods.
arXiv Detail & Related papers (2024-10-17T00:35:47Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Relational Concept Bottleneck Models [13.311396882130033]
Concept Bottleneck Models (CBMs) are not designed to solve problems.
R-CBMs are capable of both representing standard CBMs and relational GNNs.
In particular, we show that R-CBMs support the generation of concept-based explanations.
arXiv Detail & Related papers (2023-08-23T08:25:33Z) - Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models [0.5801044612920815]
This paper proposes a framework that expands the potential of data-driven approaches for DCM.
It includes pseudo data samples that represent required relationships and a loss function that measures their fulfillment.
A case study demonstrates the potential of this framework for discrete choice analysis.
arXiv Detail & Related papers (2023-05-30T12:53:55Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Structured learning of rigid-body dynamics: A survey and unified view
from a robotics perspective [5.597839822252915]
We study supervised regression models that combine rigid-body mechanics with data-driven modelling techniques.
We provide a unified view on the combination of data-driven regression models, such as neural networks and Gaussian processes, with analytical model priors.
arXiv Detail & Related papers (2020-12-11T11:26:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.