Neural Spline Search for Quantile Probabilistic Modeling
- URL: http://arxiv.org/abs/2301.04857v1
- Date: Thu, 12 Jan 2023 07:45:28 GMT
- Title: Neural Spline Search for Quantile Probabilistic Modeling
- Authors: Ruoxi Sun, Chun-Liang Li, Sercan O. Arik, Michael W. Dusenberry,
Chen-Yu Lee, Tomas Pfister
- Abstract summary: We propose a non-parametric and data-driven approach, Neural Spline Search (NSS), to represent the observed data distribution without parametric assumptions.
We demonstrate that NSS outperforms previous methods on synthetic, real-world regression and time-series forecasting tasks.
- Score: 35.914279831992964
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate estimation of output quantiles is crucial in many use cases, where
it is desired to model the range of possibility. Modeling target distribution
at arbitrary quantile levels and at arbitrary input attribute levels are
important to offer a comprehensive picture of the data, and requires the
quantile function to be expressive enough. The quantile function describing the
target distribution using quantile levels is critical for quantile regression.
Although various parametric forms for the distributions (that the quantile
function specifies) can be adopted, an everlasting problem is selecting the
most appropriate one that can properly approximate the data distributions. In
this paper, we propose a non-parametric and data-driven approach, Neural Spline
Search (NSS), to represent the observed data distribution without parametric
assumptions. NSS is flexible and expressive for modeling data distributions by
transforming the inputs with a series of monotonic spline regressions guided by
symbolic operators. We demonstrate that NSS outperforms previous methods on
synthetic, real-world regression and time-series forecasting tasks.
Related papers
- Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks [4.58556584533865]
We propose the Deep Double Poisson Network (DDPN) to produce accurate, input-conditional uncertainty representations.
DDPN vastly outperforms existing discrete models.
It can be applied to a variety of count regression datasets.
arXiv Detail & Related papers (2024-06-13T16:02:03Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
We propose a data-driven, closure model for Reynolds-averaged Navier-Stokes (RANS) simulations that incorporates aleatoric, model uncertainty.
A fully Bayesian formulation is proposed, combined with a sparsity-inducing prior in order to identify regions in the problem domain where the parametric closure is insufficient.
arXiv Detail & Related papers (2023-07-05T16:53:31Z) - Adaptive Conditional Quantile Neural Processes [9.066817971329899]
Conditional Quantile Neural Processes (CQNPs) are a new member of the neural processes family.
We introduce an extension of quantile regression where the model learns to focus on estimating informative quantiles.
Experiments with real and synthetic datasets demonstrate substantial improvements in predictive performance.
arXiv Detail & Related papers (2023-05-30T06:19:19Z) - IB-UQ: Information bottleneck based uncertainty quantification for
neural function regression and neural operator learning [11.5992081385106]
We propose a novel framework for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks.
We incorporate the bottleneck by a confidence-aware encoder, which encodes inputs into latent representations according to the confidence of the input data.
We also propose a data augmentation based information bottleneck objective which can enhance the quality of the extrapolation uncertainty.
arXiv Detail & Related papers (2023-02-07T05:56:42Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - Deep Non-Crossing Quantiles through the Partial Derivative [0.6299766708197883]
Quantile Regression provides a way to approximate a single conditional quantile.
Minimisation of the QR-loss function does not guarantee non-crossing quantiles.
We propose a generic deep learning algorithm for predicting an arbitrary number of quantiles.
arXiv Detail & Related papers (2022-01-30T15:35:21Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
We use the inner dimension of deep neural network based Autoencoders as summary statistics.
To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information that has been used to generate the training data.
arXiv Detail & Related papers (2022-01-28T12:00:31Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions.
We investigate methods for aggregating any number of conditional quantile models.
All of the models we consider in this paper can be fit using modern deep learning toolkits.
arXiv Detail & Related papers (2021-02-26T23:21:16Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Parameter Space Factorization for Zero-Shot Learning across Tasks and
Languages [112.65994041398481]
We propose a Bayesian generative model for the space of neural parameters.
We infer the posteriors over such latent variables based on data from seen task-language combinations.
Our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods.
arXiv Detail & Related papers (2020-01-30T16:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.