Modeling the evolution of temporal knowledge graphs with uncertainty
- URL: http://arxiv.org/abs/2301.04977v1
- Date: Thu, 12 Jan 2023 12:39:22 GMT
- Title: Modeling the evolution of temporal knowledge graphs with uncertainty
- Authors: Soeren Nolting, Zhen Han, Volker Tresp
- Abstract summary: We introduce a novel graph neural network architecture (WGP-NN) to jointly model the temporal evolution of the occurrence probability of events.
We demonstrate the model's state-of-the-art performance on two real-world benchmark datasets.
- Score: 34.54782960535138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting future events is a fundamental challenge for temporal knowledge
graphs (tKG). As in real life predicting a mean function is most of the time
not sufficient, but the question remains how confident can we be about our
prediction? Thus, in this work, we will introduce a novel graph neural network
architecture (WGP-NN) employing (weighted) Gaussian processes (GP) to jointly
model the temporal evolution of the occurrence probability of events and their
time-dependent uncertainty. Especially we employ Gaussian processes to model
the uncertainty of future links by their ability to predict predictive
variance. This is in contrast to existing works, which are only able to express
uncertainties in the learned entity representations. Moreover, WGP-NN can model
parameter-free complex temporal and structural dynamics of tKGs in continuous
time. We further demonstrate the model's state-of-the-art performance on two
real-world benchmark datasets.
Related papers
- ProGen: Revisiting Probabilistic Spatial-Temporal Time Series Forecasting from a Continuous Generative Perspective Using Stochastic Differential Equations [18.64802090861607]
ProGen Pro provides a robust solution that effectively captures dependencies while managing uncertainty.
Our experiments on four benchmark traffic datasets demonstrate that ProGen Pro outperforms state-of-the-art deterministic probabilistic models.
arXiv Detail & Related papers (2024-11-02T14:37:30Z) - Selective Temporal Knowledge Graph Reasoning [70.11788354442218]
Temporal Knowledge Graph (TKG) aims to predict future facts based on given historical ones.
Existing TKG reasoning models are unable to abstain from predictions they are uncertain.
We propose an abstention mechanism for TKG reasoning, which helps the existing models make selective, instead of indiscriminate, predictions.
arXiv Detail & Related papers (2024-04-02T06:56:21Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Graph-enabled Reinforcement Learning for Time Series Forecasting with
Adaptive Intelligence [11.249626785206003]
We propose a novel approach for predicting time-series data using Graphical neural network (GNN) and monitoring with Reinforcement Learning (RL)
GNNs are able to explicitly incorporate the graph structure of the data into the model, allowing them to capture temporal dependencies in a more natural way.
This approach allows for more accurate predictions in complex temporal structures, such as those found in healthcare, traffic and weather forecasting.
arXiv Detail & Related papers (2023-09-18T22:25:12Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - A Hierarchical Variational Neural Uncertainty Model for Stochastic Video
Prediction [45.6432265855424]
We introduce Neural Uncertainty Quantifier (NUQ) - a principled quantification of the model's predictive uncertainty.
Our proposed framework trains more effectively compared to the state-of-theart models.
arXiv Detail & Related papers (2021-10-06T00:25:22Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data.
In this work, we consider the time-series data as a random realization from a nonlinear state-space model.
We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings.
arXiv Detail & Related papers (2021-06-10T21:49:23Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.