Selective Temporal Knowledge Graph Reasoning
- URL: http://arxiv.org/abs/2404.01695v1
- Date: Tue, 2 Apr 2024 06:56:21 GMT
- Title: Selective Temporal Knowledge Graph Reasoning
- Authors: Zhongni Hou, Xiaolong Jin, Zixuan Li, Long Bai, Jiafeng Guo, Xueqi Cheng,
- Abstract summary: Temporal Knowledge Graph (TKG) aims to predict future facts based on given historical ones.
Existing TKG reasoning models are unable to abstain from predictions they are uncertain.
We propose an abstention mechanism for TKG reasoning, which helps the existing models make selective, instead of indiscriminate, predictions.
- Score: 70.11788354442218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal Knowledge Graph (TKG), which characterizes temporally evolving facts in the form of (subject, relation, object, timestamp), has attracted much attention recently. TKG reasoning aims to predict future facts based on given historical ones. However, existing TKG reasoning models are unable to abstain from predictions they are uncertain, which will inevitably bring risks in real-world applications. Thus, in this paper, we propose an abstention mechanism for TKG reasoning, which helps the existing models make selective, instead of indiscriminate, predictions. Specifically, we develop a confidence estimator, called Confidence Estimator with History (CEHis), to enable the existing TKG reasoning models to first estimate their confidence in making predictions, and then abstain from those with low confidence. To do so, CEHis takes two kinds of information into consideration, namely, the certainty of the current prediction and the accuracy of historical predictions. Experiments with representative TKG reasoning models on two benchmark datasets demonstrate the effectiveness of the proposed CEHis.
Related papers
- Uncertainty-Guided Enhancement on Driving Perception System via Foundation Models [37.35848849961951]
We develop a method that leverages foundation models to refine predictions from existing driving perception models.
The method demonstrates a 10 to 15 percent improvement in prediction accuracy and reduces the number of queries to the foundation model by 50 percent.
arXiv Detail & Related papers (2024-10-02T00:46:19Z) - Retrieval-Augmented Generation Meets Data-Driven Tabula Rasa Approach for Temporal Knowledge Graph Forecasting [0.0]
sLA-tKGF is a small-scale language assistant for temporal Knowledge Graph (tKG) forecasting.
Our framework constructs knowledge-infused prompts with historical data from tKGs and web search results.
It reduces hallucinations and mitigates distributional shift challenges through comprehending changing trends over time.
arXiv Detail & Related papers (2024-08-18T11:52:24Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - NeuSTIP: A Novel Neuro-Symbolic Model for Link and Time Prediction in
Temporal Knowledge Graphs [13.442923127130806]
We propose a novel temporal neuro-symbolic model, NeuSTIP, that performs link prediction and time interval prediction in a temporal knowledge graph.
NeuSTIP learns temporal rules in the presence of the Allen predicates that ensure the temporal consistency between neighboring predicates.
Our empirical evaluation on two time interval based datasets suggests that our model outperforms state-of-the-art models for both link prediction and the time interval prediction task.
arXiv Detail & Related papers (2023-05-15T13:46:34Z) - Modeling the evolution of temporal knowledge graphs with uncertainty [34.54782960535138]
We introduce a novel graph neural network architecture (WGP-NN) to jointly model the temporal evolution of the occurrence probability of events.
We demonstrate the model's state-of-the-art performance on two real-world benchmark datasets.
arXiv Detail & Related papers (2023-01-12T12:39:22Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.