Unified simulation methods for quantum acoustic devices
- URL: http://arxiv.org/abs/2301.05172v1
- Date: Thu, 12 Jan 2023 17:48:51 GMT
- Title: Unified simulation methods for quantum acoustic devices
- Authors: Hugo Banderier, Maxwell Drimmer, Yiwen Chu
- Abstract summary: In circuit quantum acoustodynamics (cQAD), superconducting circuits are combined with acoustic resonators to create and control non-classical states of mechanical motion.
Here, we demonstrate a single simulation of a superconducting qubit coupled to an acoustic and a microwave resonator.
We introduce two methods for using this simulation to predict the frequencies, coupling rates, and energy-participation ratios of the electromechanical modes of the hybrid system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In circuit quantum acoustodynamics (cQAD), superconducting circuits are
combined with acoustic resonators to create and control non-classical states of
mechanical motion. Simulating these systems is challenging due to the extreme
difference in scale between the microwave and mechanical wavelengths. All
existing techniques simulate the electromagnetic and mechanical subsystems
separately. However, this approach may not be adequate for all cQAD devices.
Here, we demonstrate a single simulation of a superconducting qubit coupled to
an acoustic and a microwave resonator and introduce two methods for using this
simulation to predict the frequencies, coupling rates, and energy-participation
ratios of the electromechanical modes of the hybrid system. We also discuss how
these methods can be used to investigate important dissipation channels and
quantify the nontrivial effects of mode hybridization in our device. Our
methodology is flexible and can be extended to other acoustic resonators and
quantum degrees of freedom, providing a valuable new tool for designing hybrid
quantum systems.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Efficient quantum simulation of nonlinear interactions using SNAP and
Rabi gates [0.7366405857677227]
We present a deterministic simulation technique that efficiently models nonlinear bosonic dynamics.
Our proposed simulation method facilitates high-fidelity modeling of phenomena that emerge from higher-order bosonic interactions.
arXiv Detail & Related papers (2023-12-15T16:44:43Z) - Flexible Integration of Gigahertz Nanomechanical Resonators with a
Superconducting Microwave Resonator using a Bonded Flip-Chip Method [1.9999259391104391]
We demonstrate strong coupling of gigahertz- nanofrequency resonators to a frequency-tunable superconducting microwave resonator via a galvanically bonded flip-chip method.
Our work represents a step towards a plug-and-play architecture for building more complex hybrid quantum systems.
arXiv Detail & Related papers (2023-04-26T14:39:37Z) - Strong mechanical squeezing in a microcavity with double quantum wells [0.0]
In a hybrid quantum system composed of two quantum wells placed inside a cavity with a moving end mirror pumped by bichromatic coherent light, we address the formation of squeezed states of a mechanical resonator.
We show that the robustness of this squeezing against thermal fluctuations is important for practical applications of such systems.
arXiv Detail & Related papers (2023-02-01T16:00:55Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Simultaneous Brillouin and piezoelectric coupling to high-frequency bulk
acoustic resonator [2.031688729582683]
We present a novel hybrid microwave/optical platform capable of coupling to bulk acoustic waves through cavity-enhanced piezoelectric and photoelastic interactions.
The modular, tunable system achieves fully resonant and well-mode-matched interactions between a 3D microwave cavity, a high-frequency bulk acoustic resonator, and a Fabry Perot cavity.
arXiv Detail & Related papers (2022-08-12T18:48:35Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Beyond linear coupling in microwave optomechanics [0.0]
We analyze the results in the framework of an extended nonlinear optomechanical theory.
No thermo-optical instabilities are observed, in contrast with laser-driven systems.
We find that the motion imprints a wide comb of extremely narrow peaks in the microwave output field.
arXiv Detail & Related papers (2020-03-06T13:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.