Beyond linear coupling in microwave optomechanics
- URL: http://arxiv.org/abs/2003.03176v2
- Date: Thu, 24 Sep 2020 15:56:12 GMT
- Title: Beyond linear coupling in microwave optomechanics
- Authors: D. Cattiaux, X. Zhou, S. Kumar, I. Golokolenov, R. R. Gazizulin, A.
Luck, L. Mercier de L\'epinay, M. Sillanp\"a\"a, A. D. Armour, A. Fefferman
and E. Collin
- Abstract summary: We analyze the results in the framework of an extended nonlinear optomechanical theory.
No thermo-optical instabilities are observed, in contrast with laser-driven systems.
We find that the motion imprints a wide comb of extremely narrow peaks in the microwave output field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the nonlinear dynamics of a cavity optomechanical system. Our
realization consisting of a drumhead nano-electro-mechanical resonator (NEMS)
coupled to a microwave cavity, allows for a nearly ideal platform to study the
nonlinearities arising purely due to radiation-pressure physics. Experiments
are performed under a strong microwave Stokes pumping which triggers mechanical
self-sustained oscillations. We analyze the results in the framework of an
extended nonlinear optomechanical theory, and demonstrate that quadratic and
cubic coupling terms in the opto-mechanical Hamiltonian have to be considered.
Quantitative agreement with the measurements is obtained considering only
genuine geometrical nonlinearities: no thermo-optical instabilities are
observed, in contrast with laser-driven systems. Based on these results, we
describe a method to quantify nonlinear properties of microwave optomechanical
devices. Such a technique, available now in the quantum electro-mechanics
toolbox, but completely generic, is mandatory for the development of new
schemes where higher-order coupling terms are proposed as a new resource, like
Quantum Non-Demolition measurements, or in the search for new fundamental
quantum signatures, like Quantum Gravity. We also find that the motion imprints
a wide comb of extremely narrow peaks in the microwave output field, which
could also be exploited in specific microwave-based measurements, potentially
limited only by the quantum noise of the optical and the mechanical fields for
a ground-state cooled NEMS device.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - A mechanical qubit [2.123237925838863]
Single-phonon anharmonicity in our system exceeds the decoherence rate by a factor of 6.8.
Our work adds another unique capability to a powerful quantum acoustics platform for quantum simulations, sensing, and information processing.
arXiv Detail & Related papers (2024-06-11T15:27:02Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Cavity quantum optomechanical nonlinearities and position measurement
beyond the breakdown of the linearized approximation [0.0]
We develop a theoretical formalism of cavity quantum optomechanics that captures the nonlinearities of both the radiation-pressure interaction and the cavity response.
We propose how position measurement can be performed beyond the breakdown of the linearized approximation.
arXiv Detail & Related papers (2022-07-22T15:51:02Z) - Topological lattices realized in superconducting circuit optomechanics [0.0]
We show that it is possible to directly measure the mode functions of hybridized modes without using any local probe.
Such optomechanical lattices offer an avenue to explore collective, quantum many-body, and quench dynamics.
arXiv Detail & Related papers (2021-11-17T14:13:52Z) - Can the displacemon device test objective collapse models? [0.0]
"Displacemon" is a proposed electromechanical device consisting of a mechanical resonator flux-coupled to a superconducting qubit.
In the original proposal, the mechanical resonator was a carbon nanotube, containing $106$ nucleons.
We propose using an aluminium mechanical resonator on two larger mass scales, one inspired by the Marshall-Simon-Penrose-Bouwmeester moving-mirror proposal, and one set by the Planck mass.
arXiv Detail & Related papers (2021-10-28T14:56:30Z) - Two-mode Schr\"odinger-cat states with nonlinear optomechanics:
generation and verification of non-Gaussian mechanical entanglement [0.0]
We introduce a pulsed approach that utilizes the nonlinearity of the radiation-pressure interaction combined with photon-counting measurements.
We describe a protocol using subsequent pulsed interactions to verify the non-Gaussian entanglement generated.
Our scheme offers significant potential for further research and development that utilizes such non-Gaussian states for quantum-information and sensing applications.
arXiv Detail & Related papers (2021-09-17T12:58:52Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.