Anti-aliasing Predictive Coding Network for Future Video Frame
Prediction
- URL: http://arxiv.org/abs/2301.05421v2
- Date: Thu, 11 May 2023 12:56:05 GMT
- Title: Anti-aliasing Predictive Coding Network for Future Video Frame
Prediction
- Authors: Chaofan Ling, Weihua Li, Junpei Zhong
- Abstract summary: We introduce here a predictive coding based model that aims to generate accurate and sharp future frames.
We propose and improve several artifacts to ensure that the neural networks generate clear and natural frames.
- Score: 1.4610038284393165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce here a predictive coding based model that aims to generate
accurate and sharp future frames. Inspired by the predictive coding hypothesis
and related works, the total model is updated through a combination of
bottom-up and top-down information flows, which can enhance the interaction
between different network levels. Most importantly, We propose and improve
several artifacts to ensure that the neural networks generate clear and natural
frames. Different inputs are no longer simply concatenated or added, they are
calculated in a modulated manner to avoid being roughly fused. The downsampling
and upsampling modules have been redesigned to ensure that the network can more
easily construct images from Fourier features of low-frequency inputs.
Additionally, the training strategies are also explored and improved to
generate believable results and alleviate inconsistency between the input
predicted frames and ground truth. Our proposals achieve results that better
balance pixel accuracy and visualization effect.
Related papers
- Multi-Scale Feature Prediction with Auxiliary-Info for Neural Image Compression [13.076563599765176]
We introduce a new predictive structure consisting of the auxiliary coarse network and the main network, inspired by neural video compression.
Our model outperforms other neural image compression models and achieves a 19.49% higher rate-distortion performance than VVC on Tecnick dataset.
arXiv Detail & Related papers (2024-09-19T12:41:53Z) - PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks [30.701422594374456]
We present a framework for preimage abstraction that produces under- and over-approximations of any polyhedral output set.
We evaluate our method on a range of tasks, demonstrating significant improvement in efficiency and scalability to high-input-dimensional image classification tasks.
arXiv Detail & Related papers (2024-08-17T17:24:47Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
Video frame is an important low-level computation vision task, which can increase frame rate for more fluent visual experience.
Existing methods have achieved great success by employing advanced motion models and synthesis networks.
WaveletVFI can reduce computation up to 40% while maintaining similar accuracy, making it perform more efficiently against other state-of-the-arts.
arXiv Detail & Related papers (2023-09-07T06:41:15Z) - End-to-end Neural Video Coding Using a Compound Spatiotemporal
Representation [33.54844063875569]
We propose a hybrid motion compensation (HMC) method that adaptively combines the predictions generated by two approaches.
Specifically, we generate a compoundtemporal representation (STR) through a recurrent information aggregation (RIA) module.
We further design a one-to-many decoder pipeline to generate multiple predictions from the CSTR, including vector-based resampling, adaptive kernel-based resampling, compensation mode selection maps and texture enhancements.
arXiv Detail & Related papers (2021-08-05T19:43:32Z) - Improved CNN-based Learning of Interpolation Filters for Low-Complexity
Inter Prediction in Video Coding [5.46121027847413]
This paper introduces a novel explainable neural network-based inter-prediction scheme.
A novel training framework enables each network branch to resemble a specific fractional shift.
When implemented in the context of the Versatile Video Coding (VVC) test model, 0.77%, 1.27% and 2.25% BD-rate savings can be achieved.
arXiv Detail & Related papers (2021-06-16T16:48:01Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
Convolutional Neural Networks (CNNs) do not have a predictable recognition behavior with respect to the input resolution change.
We employ meta learners to generate convolutional weights of main networks for various input scales.
We further utilize knowledge distillation on the fly over model predictions based on different input resolutions.
arXiv Detail & Related papers (2020-07-13T04:27:25Z) - RAIN: A Simple Approach for Robust and Accurate Image Classification
Networks [156.09526491791772]
It has been shown that the majority of existing adversarial defense methods achieve robustness at the cost of sacrificing prediction accuracy.
This paper proposes a novel preprocessing framework, which we term Robust and Accurate Image classificatioN(RAIN)
RAIN applies randomization over inputs to break the ties between the model forward prediction path and the backward gradient path, thus improving the model robustness.
We conduct extensive experiments on the STL10 and ImageNet datasets to verify the effectiveness of RAIN against various types of adversarial attacks.
arXiv Detail & Related papers (2020-04-24T02:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.