Scalable Estimation for Structured Additive Distributional Regression
- URL: http://arxiv.org/abs/2301.05593v1
- Date: Fri, 13 Jan 2023 14:59:42 GMT
- Title: Scalable Estimation for Structured Additive Distributional Regression
- Authors: Nikolaus Umlauf, Johannes Seiler, Mattias Wetscher, Thorsten Simon,
Stefan Lang, Nadja Klein
- Abstract summary: We propose a novel backfitting algorithm, which is based on the ideas of gradient descent and can deal virtually with any amount of data on a conventional laptop.
Performance is evaluated using an extensive simulation study and an exceptionally challenging and unique example of lightning count prediction over Austria.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, fitting probabilistic models have gained importance in many areas
but estimation of such distributional models with very large data sets is a
difficult task. In particular, the use of rather complex models can easily lead
to memory-related efficiency problems that can make estimation infeasible even
on high-performance computers. We therefore propose a novel backfitting
algorithm, which is based on the ideas of stochastic gradient descent and can
deal virtually with any amount of data on a conventional laptop. The algorithm
performs automatic selection of variables and smoothing parameters, and its
performance is in most cases superior or at least equivalent to other
implementations for structured additive distributional regression, e.g.,
gradient boosting, while maintaining low computation time. Performance is
evaluated using an extensive simulation study and an exceptionally challenging
and unique example of lightning count prediction over Austria. A very large
dataset with over 9 million observations and 80 covariates is used, so that a
prediction model cannot be estimated with standard distributional regression
methods but with our new approach.
Related papers
- Uncertainty estimation in satellite precipitation spatial prediction by combining distributional regression algorithms [3.8623569699070353]
We introduce the concept of distributional regression for the engineering task of creating precipitation datasets through data merging.
We propose new ensemble learning methods that can be valuable not only for spatial prediction but also for prediction problems in general.
arXiv Detail & Related papers (2024-06-29T05:58:00Z) - A Provably Accurate Randomized Sampling Algorithm for Logistic Regression [2.7930955543692817]
We present a simple, randomized sampling-based algorithm for logistic regression problem.
We prove that accurate approximations can be achieved with a sample whose size is much smaller than the total number of observations.
Overall, our work sheds light on the potential of using randomized sampling approaches to efficiently approximate the estimated probabilities in logistic regression.
arXiv Detail & Related papers (2024-02-26T06:20:28Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Bayesian score calibration for approximate models [0.0]
We propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification.
Our approach requires only a (fixed) small number of complex model simulations and is numerically stable.
arXiv Detail & Related papers (2022-11-10T06:00:58Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions.
We investigate methods for aggregating any number of conditional quantile models.
All of the models we consider in this paper can be fit using modern deep learning toolkits.
arXiv Detail & Related papers (2021-02-26T23:21:16Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.