A Provably Accurate Randomized Sampling Algorithm for Logistic Regression
- URL: http://arxiv.org/abs/2402.16326v3
- Date: Sun, 31 Mar 2024 08:45:51 GMT
- Title: A Provably Accurate Randomized Sampling Algorithm for Logistic Regression
- Authors: Agniva Chowdhury, Pradeep Ramuhalli,
- Abstract summary: We present a simple, randomized sampling-based algorithm for logistic regression problem.
We prove that accurate approximations can be achieved with a sample whose size is much smaller than the total number of observations.
Overall, our work sheds light on the potential of using randomized sampling approaches to efficiently approximate the estimated probabilities in logistic regression.
- Score: 2.7930955543692817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In statistics and machine learning, logistic regression is a widely-used supervised learning technique primarily employed for binary classification tasks. When the number of observations greatly exceeds the number of predictor variables, we present a simple, randomized sampling-based algorithm for logistic regression problem that guarantees high-quality approximations to both the estimated probabilities and the overall discrepancy of the model. Our analysis builds upon two simple structural conditions that boil down to randomized matrix multiplication, a fundamental and well-understood primitive of randomized numerical linear algebra. We analyze the properties of estimated probabilities of logistic regression when leverage scores are used to sample observations, and prove that accurate approximations can be achieved with a sample whose size is much smaller than the total number of observations. To further validate our theoretical findings, we conduct comprehensive empirical evaluations. Overall, our work sheds light on the potential of using randomized sampling approaches to efficiently approximate the estimated probabilities in logistic regression, offering a practical and computationally efficient solution for large-scale datasets.
Related papers
- High-dimensional logistic regression with missing data: Imputation, regularization, and universality [7.167672851569787]
We study high-dimensional, ridge-regularized logistic regression.
We provide exact characterizations of both the prediction error and the estimation error.
arXiv Detail & Related papers (2024-10-01T21:41:21Z) - Meta-Learning with Generalized Ridge Regression: High-dimensional Asymptotics, Optimality and Hyper-covariance Estimation [14.194212772887699]
We consider meta-learning within the framework of high-dimensional random-effects linear models.
We show the precise behavior of the predictive risk for a new test task when the data dimension grows proportionally to the number of samples per task.
We propose and analyze an estimator inverse random regression coefficients based on data from the training tasks.
arXiv Detail & Related papers (2024-03-27T21:18:43Z) - A Novel Approach in Solving Stochastic Generalized Linear Regression via
Nonconvex Programming [1.6874375111244329]
This paper considers a generalized linear regression model as a problem with chance constraints.
The results of the proposed algorithm were over 1 to 2 percent better than the ordinary logistic regression model.
arXiv Detail & Related papers (2024-01-16T16:45:51Z) - From Estimation to Sampling for Bayesian Linear Regression with
Spike-and-Slab Prior [5.652230026511106]
We consider Bayesian linear regression with sparsity-inducing prior and design efficient sampling algorithms leveraging posterior contraction properties.
A quasi-likelihood with Gaussian spike-and-slab (that is favorable both statistically and computationally) is investigated and two algorithms based on Gibbs sampling and Localization are analyzed.
arXiv Detail & Related papers (2023-07-09T16:03:41Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.