Young Labeled Faces in the Wild (YLFW): A Dataset for Children Faces
Recognition
- URL: http://arxiv.org/abs/2301.05776v1
- Date: Fri, 13 Jan 2023 22:19:44 GMT
- Title: Young Labeled Faces in the Wild (YLFW): A Dataset for Children Faces
Recognition
- Authors: Iurii Medvedev and Farhad Shadmand and Nuno Gon\c{c}alves
- Abstract summary: We present a benchmark dataset for children's face recognition, which is compiled similarly to the famous face recognition benchmarks LFW, CALFW, CPLFW, XQLFW and AgeDB.
We also present a development dataset for adapting face recognition models for face images of children.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Face recognition has achieved outstanding performance in the last decade with
the development of deep learning techniques.
Nowadays, the challenges in face recognition are related to specific
scenarios, for instance, the performance under diverse image quality, the
robustness for aging and edge cases of person age (children and elders),
distinguishing of related identities.
In this set of problems, recognizing children's faces is one of the most
sensitive and important. One of the reasons for this problem is the existing
bias towards adults in existing face datasets.
In this work, we present a benchmark dataset for children's face recognition,
which is compiled similarly to the famous face recognition benchmarks LFW,
CALFW, CPLFW, XQLFW and AgeDB.
We also present a development dataset (separated into train and test parts)
for adapting face recognition models for face images of children.
The proposed data is balanced for African, Asian, Caucasian, and Indian
races. To the best of our knowledge, this is the first standartized data tool
set for benchmarking and the largest collection for development for children's
face recognition. Several face recognition experiments are presented to
demonstrate the performance of the proposed data tool set.
Related papers
- ChildDiffusion: Unlocking the Potential of Generative AI and Controllable Augmentations for Child Facial Data using Stable Diffusion and Large Language Models [1.1470070927586018]
The framework is validated by rendering high-quality child faces representing ethnicity data, micro expressions, face pose variations, eye blinking effects, different hair colours and styles, aging, multiple and different child gender subjects in a single frame.
The proposed method circumvents common issues encountered in generative AI tools, such as temporal inconsistency and limited control over the rendered outputs.
arXiv Detail & Related papers (2024-06-17T14:37:14Z) - LAFS: Landmark-based Facial Self-supervised Learning for Face
Recognition [37.4550614524874]
We focus on learning facial representations that can be adapted to train effective face recognition models.
We explore the learning strategy of unlabeled facial images through self-supervised pretraining.
Our method achieves significant improvement over the state-of-the-art on multiple face recognition benchmarks.
arXiv Detail & Related papers (2024-03-13T01:07:55Z) - Child Face Recognition at Scale: Synthetic Data Generation and
Performance Benchmark [3.4110993541168853]
HDA-SynChildFaces consists of 1,652 subjects and a total of 188,832 images, each subject being present at various ages and with many different intra-subject variations.
We evaluate the performance of various facial recognition systems on the generated database and compare the results of adults and children at different ages.
arXiv Detail & Related papers (2023-04-23T15:29:26Z) - How to Boost Face Recognition with StyleGAN? [13.067766076889995]
State-of-the-art face recognition systems require vast amounts of labeled training data.
Self-supervised revolution in the industry motivates research on the adaptation of related techniques to facial recognition.
We show that a simple approach based on fine-tuning pSp encoder for StyleGAN allows us to improve upon the state-of-the-art facial recognition.
arXiv Detail & Related papers (2022-10-18T18:41:56Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - FP-Age: Leveraging Face Parsing Attention for Facial Age Estimation in
the Wild [50.8865921538953]
We propose a method to explicitly incorporate facial semantics into age estimation.
We design a face parsing-based network to learn semantic information at different scales.
We show that our method consistently outperforms all existing age estimation methods.
arXiv Detail & Related papers (2021-06-21T14:31:32Z) - Pre-training strategies and datasets for facial representation learning [58.8289362536262]
We show how to find a universal face representation that can be adapted to several facial analysis tasks and datasets.
We systematically investigate two ways of large-scale representation learning applied to faces: supervised and unsupervised pre-training.
Our main two findings are: Unsupervised pre-training on completely in-the-wild, uncurated data provides consistent and, in some cases, significant accuracy improvements.
arXiv Detail & Related papers (2021-03-30T17:57:25Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
This work explores facial expression bias as a security vulnerability of face recognition systems.
We present a comprehensive analysis of how facial expression bias impacts the performance of face recognition technologies.
arXiv Detail & Related papers (2020-11-17T18:12:41Z) - Boosting Unconstrained Face Recognition with Auxiliary Unlabeled Data [59.85605718477639]
We present an approach to use unlabeled faces to learn generalizable face representations.
Experimental results on unconstrained datasets show that a small amount of unlabeled data with sufficient diversity can lead to an appreciable gain in recognition performance.
arXiv Detail & Related papers (2020-03-17T20:58:56Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
We audit ArcFace, a state-of-the-art, open source face recognition system, in a large-scale face identification experiment with more than one million distractor images.
We find a Rank-1 face identification accuracy of 79.71% for individuals present in the model's training data and an accuracy of 75.73% for those not present.
arXiv Detail & Related papers (2020-01-09T15:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.