Deepfake Detection using Biological Features: A Survey
- URL: http://arxiv.org/abs/2301.05819v1
- Date: Sat, 14 Jan 2023 05:07:46 GMT
- Title: Deepfake Detection using Biological Features: A Survey
- Authors: Kundan Patil, Shrushti Kale, Jaivanti Dhokey, Abhishek Gulhane
- Abstract summary: This study describes the history of deepfake, its development and detection, and the challenges based on physiological measurements.
Deepfakes have been used to blackmail individuals, plan terrorist attacks, disseminate false information, defame individuals, and foment political turmoil.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfake is a deep learning-based technique that makes it easy to change or
modify images and videos. In investigations and court, visual evidence is
commonly employed, but these pieces of evidence may now be suspect due to
technological advancements in deepfake. Deepfakes have been used to blackmail
individuals, plan terrorist attacks, disseminate false information, defame
individuals, and foment political turmoil. This study describes the history of
deepfake, its development and detection, and the challenges based on
physiological measurements such as eyebrow recognition, eye blinking detection,
eye movement detection, ear and mouth detection, and heartbeat detection. The
study also proposes a scope in this field and compares the different biological
features and their classifiers. Deepfakes are created using the generative
adversarial network (GANs) model, and were once easy to detect by humans due to
visible artifacts. However, as technology has advanced, deepfakes have become
highly indistinguishable from natural images, making it important to review
detection methods.
Related papers
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
Deepfakes of victims or public figures can be used by fraudsters for blackmailing, extorsion and financial fraud.
In our research we propose to use geometric-fakeness features (GFF) that characterize a dynamic degree of a face presence in a video.
We employ our approach to analyze videos with multiple faces that are simultaneously present in a video.
arXiv Detail & Related papers (2024-10-10T13:10:34Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
Deep learning has enabled the creation or manipulation of high-fidelity facial images and videos.
This technology, also known as deepfake, has achieved dramatic progress and become increasingly popular in social media.
To diminish the risks of deepfake, it is desirable to develop powerful forgery detection methods.
arXiv Detail & Related papers (2024-09-22T01:42:01Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
We introduce GazeForensics, an innovative DeepFake detection method that utilizes gaze representation obtained from a 3D gaze estimation model.
Experiment results reveal that our proposed GazeForensics outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2023-11-13T04:48:33Z) - How Generalizable are Deepfake Image Detectors? An Empirical Study [4.42204674141385]
We present the first empirical study on the generalizability of deepfake detectors.
Our study utilizes six deepfake datasets, five deepfake image detection methods, and two model augmentation approaches.
We find that detectors are learning unwanted properties specific to synthesis methods and struggling to extract discriminative features.
arXiv Detail & Related papers (2023-08-08T10:30:34Z) - Why Do Facial Deepfake Detectors Fail? [9.60306700003662]
Recent advancements in deepfake technology have allowed the creation of highly realistic fake media, such as video, image, and audio.
These materials pose significant challenges to human authentication, such as impersonation, misinformation, or even a threat to national security.
Several deepfake detection algorithms have been proposed, leading to an ongoing arms race between deepfake creators and deepfake detectors.
arXiv Detail & Related papers (2023-02-25T20:54:02Z) - DeePhy: On Deepfake Phylogeny [58.01631614114075]
DeePhy is a novel Deepfake Phylogeny dataset which consists of 5040 deepfake videos generated using three different generation techniques.
We present the benchmark on DeePhy dataset using six deepfake detection algorithms.
arXiv Detail & Related papers (2022-09-19T15:30:33Z) - Using Deep Learning to Detecting Deepfakes [0.0]
Deepfakes are videos or images that replace one persons face with another computer-generated face, often a more recognizable person in society.
To combat this online threat, researchers have developed models that are designed to detect deepfakes.
This study looks at various deepfake detection models that use deep learning algorithms to combat this looming threat.
arXiv Detail & Related papers (2022-07-27T17:05:16Z) - Watch Those Words: Video Falsification Detection Using Word-Conditioned
Facial Motion [82.06128362686445]
We propose a multi-modal semantic forensic approach to handle both cheapfakes and visually persuasive deepfakes.
We leverage the idea of attribution to learn person-specific biometric patterns that distinguish a given speaker from others.
Unlike existing person-specific approaches, our method is also effective against attacks that focus on lip manipulation.
arXiv Detail & Related papers (2021-12-21T01:57:04Z) - Understanding the Security of Deepfake Detection [23.118012417901078]
We study the security of state-of-the-art deepfake detection methods in adversarial settings.
We use two large-scale public deepfakes data sources including FaceForensics++ and Facebook Deepfake Detection Challenge.
Our results uncover multiple security limitations of the deepfake detection methods in adversarial settings.
arXiv Detail & Related papers (2021-07-05T14:18:21Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
We introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet.
We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically.
arXiv Detail & Related papers (2021-01-05T11:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.