論文の概要: ${S}^{2}$Net: Accurate Panorama Depth Estimation on Spherical Surface
- arxiv url: http://arxiv.org/abs/2301.05845v1
- Date: Sat, 14 Jan 2023 07:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 18:33:40.478638
- Title: ${S}^{2}$Net: Accurate Panorama Depth Estimation on Spherical Surface
- Title(参考訳): ${S}^{2}$Net:球面上の正確なパノラマ深さ推定
- Authors: Meng Li, Senbo Wang, Weihao Yuan, Weichao Shen, Zhe Sheng and Zilong
Dong
- Abstract要約: 単球面上の単分子パノラマ深度推定のためのエンドツーエンドのディープネットワークを提案する。
具体的には、等方形画像から抽出した特徴写像を一様分散格子でサンプリングした単位球面に投影する。
本研究では,機能マップをスキップ接続から解き放ち,グローバルコンテキストの獲得能力を高めるために,グローバルなクロスアテンションベースの融合モジュールを提案する。
- 参考スコア(独自算出の注目度): 4.649656275858966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular depth estimation is an ambiguous problem, thus global structural
cues play an important role in current data-driven single-view depth estimation
methods. Panorama images capture the complete spatial information of their
surroundings utilizing the equirectangular projection which introduces large
distortion. This requires the depth estimation method to be able to handle the
distortion and extract global context information from the image. In this
paper, we propose an end-to-end deep network for monocular panorama depth
estimation on a unit spherical surface. Specifically, we project the feature
maps extracted from equirectangular images onto unit spherical surface sampled
by uniformly distributed grids, where the decoder network can aggregate the
information from the distortion-reduced feature maps. Meanwhile, we propose a
global cross-attention-based fusion module to fuse the feature maps from skip
connection and enhance the ability to obtain global context. Experiments are
conducted on five panorama depth estimation datasets, and the results
demonstrate that the proposed method substantially outperforms previous
state-of-the-art methods. All related codes will be open-sourced in the
upcoming days.
- Abstract(参考訳): 単分子深度推定は曖昧な問題であるため、現在のデータ駆動単視点深度推定法において、グローバルな構造的手がかりが重要な役割を果たす。
パノラマ画像は、大きな歪みをもたらす等角射影を用いて周囲の完全な空間情報をキャプチャする。
これにより、歪みを処理し、画像からグローバルなコンテキスト情報を抽出できる深さ推定法が必要となる。
本稿では,単球面上の単分子パノラマ深度推定のためのエンドツーエンドのディープネットワークを提案する。
具体的には, 等角像から抽出した特徴マップを, 一様分散グリッドでサンプリングした単位球面上に投影し, デコーダネットワークが歪み低減した特徴マップから情報を集約する。
一方,機能マップをスキップ接続から解き放ち,グローバルコンテキストの獲得能力を高めるために,グローバルなクロスアテンションベースの融合モジュールを提案する。
5つのパノラマ深度推定データセットを用いて実験を行い,提案手法が従来手法より大幅に優れていたことを示す。
関連するコードはすべて,今後数日でオープンソース化される予定だ。
関連論文リスト
- Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution [55.9977636042469]
ビット深度圧縮は、微妙な変化のある領域で均一な深度表現を生成し、詳細情報の回復を妨げる。
密集したランダムノイズは、シーンのグローバルな幾何学的構造を推定する精度を低下させる。
圧縮深度マップ超解像のための新しいフレームワークGDNetを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:37:30Z) - Multi-Camera Collaborative Depth Prediction via Consistent Structure
Estimation [75.99435808648784]
本稿では,新しいマルチカメラ協調深度予測法を提案する。
カメラ間の構造的整合性を維持しながら、大きな重なり合う領域を必要としない。
DDADおよびNuScenesデータセットの実験結果から,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2022-10-05T03:44:34Z) - SphereDepth: Panorama Depth Estimation from Spherical Domain [17.98608948955211]
本稿では,新しいパノラマ深度推定法であるSphereDepthを提案する。
プロジェクション前処理なしで球面メッシュ上の深さを直接予測する。
パノラマ深度推定の最先端手法と同等の結果が得られる。
論文 参考訳(メタデータ) (2022-08-29T16:50:19Z) - Visual Attention-based Self-supervised Absolute Depth Estimation using
Geometric Priors in Autonomous Driving [8.045833295463094]
空間的注意とチャネルの注意をすべてのステージに適用する,完全に視覚的注意に基づく奥行き(VADepth)ネットワークを導入する。
VADepthネットワークは、空間的およびチャネル的次元に沿った特徴の依存関係を長距離にわたって連続的に抽出することにより、重要な詳細を効果的に保存することができる。
KITTIデータセットの実験結果は、このアーキテクチャが最先端のパフォーマンスを達成することを示している。
論文 参考訳(メタデータ) (2022-05-18T08:01:38Z) - ACDNet: Adaptively Combined Dilated Convolution for Monocular Panorama
Depth Estimation [9.670696363730329]
本研究では,単眼パノラマ画像の深度マップを予測するために,適応的に組み合わせた拡張畳み込みに基づくACDNetを提案する。
仮想および実世界の3つのデータセットで深度推定実験を行い,提案したACDNetが現在最先端(SOTA)手法を大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2021-12-29T08:04:19Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
深度補正のための新しい大域的幾何制約を提案する。
低次元部分空間上によく配置される深さ写像を仮定することにより、高密度深度写像は全解像度の主深度基底の重み付け和で近似することができる。
論文 参考訳(メタデータ) (2020-12-02T11:57:37Z) - View-consistent 4D Light Field Depth Estimation [37.04038603184669]
本研究では,光場内の各サブアパーチャ画像の深度マップを一貫したビューで計算する手法を提案する。
提案手法は,EPIを用いて深度エッジを正確に定義し,その辺を中央の視野内で空間的に拡散させる。
論文 参考訳(メタデータ) (2020-09-09T01:47:34Z) - Learning Geocentric Object Pose in Oblique Monocular Images [18.15647135620892]
オブジェクトのジオセントリックなポーズは、地上の高さと重力に対する向きとして定義され、RGBD画像を用いたオブジェクトの検出、セグメンテーション、ローカライゼーションタスクのための現実世界の構造の強力な表現である。
我々は,この課題に対処するために,ジオセントリックなポーズの符号化を開発し,この表現を高密度に計算するために深層ネットワークを訓練する。
これらの属性を利用して斜め画像を修正し、観測対象視差を除去し、局所化の精度を劇的に向上させ、非常に異なる斜めの視点から撮影された複数の画像の正確なアライメントを可能にする。
論文 参考訳(メタデータ) (2020-07-01T20:06:19Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z) - OmniSLAM: Omnidirectional Localization and Dense Mapping for
Wide-baseline Multi-camera Systems [88.41004332322788]
超広視野魚眼カメラ(FOV)を用いた広視野多視点ステレオ構成のための全方向位置決めと高密度マッピングシステムを提案する。
より実用的で正確な再構築のために、全方向深度推定のための改良された軽量のディープニューラルネットワークを導入する。
我々は全方位深度推定をビジュアル・オドメトリー(VO)に統合し,大域的整合性のためのループ閉鎖モジュールを付加する。
論文 参考訳(メタデータ) (2020-03-18T05:52:10Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
単一のRGB画像から深度を推定することはコンピュータビジョンの基本的な課題である。
この作業では、異なる視点ではなく、フォーカスキューからの奥行きに依存しています。
我々は,KITTIとMake3Dデータセットの教師あり手法と同等な結果を提示し,教師なし学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-14T20:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。