Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning
- URL: http://arxiv.org/abs/2301.05931v1
- Date: Sat, 14 Jan 2023 15:07:43 GMT
- Title: Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning
- Authors: Zhihang Hu, Qinze Yu, Yucheng Guo, Taifeng Wang, Irwin King, Xin Gao,
Le Song, and Yu Li
- Abstract summary: Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
- Score: 82.93806087715507
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Drug combination therapy is a well-established strategy for disease treatment
with better effectiveness and less safety degradation. However, identifying
novel drug combinations through wet-lab experiments is resource intensive due
to the vast combinatorial search space. Recently, computational approaches,
specifically deep learning models have emerged as an efficient way to discover
synergistic combinations. While previous methods reported fair performance,
their models usually do not take advantage of multi-modal data and they are
unable to handle new drugs or cell lines. In this study, we collected data from
various datasets covering various drug-related aspects. Then, we take advantage
of large-scale pre-training models to generate informative representations and
features for drugs, proteins, and diseases. Based on that, a message-passing
graph is built on top to propagate information together with graph structure
learning flexibility. This is first introduced in the biological networks and
enables us to generate pseudo-relations in the graph. Our framework achieves
state-of-the-art results in comparison with other deep learning-based methods
on synergistic prediction benchmark datasets. We are also capable of
inferencing new drug combination data in a test on an independent set released
by AstraZeneca, where 10% of improvement over previous methods is observed. In
addition, we're robust against unseen drugs and surpass almost 15% AU ROC
compared to the second-best model. We believe our framework contributes to both
the future wet-lab discovery of novel drugs and the building of promising
guidance for precise combination medicine.
Related papers
- MKDTI: Predicting drug-target interactions via multiple kernel fusion on graph attention network [37.40418564922425]
We formulate a model called MKDTI by extracting kernel information from various layer embeddings of a graph attention network.
We use a Dual Laplacian Regularized Least Squares framework to forecast novel drug-target entity connections.
arXiv Detail & Related papers (2024-07-14T02:53:25Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - A Deep Learning Approach to the Prediction of Drug Side-Effects on
Molecular Graphs [2.4087148947930634]
We develop a methodology to predict drug side-effects using Graph Neural Networks.
We build a dataset from freely accessible and well established data sources.
The results show that our method has an improved classification capability, under many parameters and metrics.
arXiv Detail & Related papers (2022-11-30T10:12:41Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Graph2MDA: a multi-modal variational graph embedding model for
predicting microbe-drug associations [7.149873402253933]
Microbes have become novel targets for the development of antibacterial agents.
screening of microbe-drug associations can benefit greatly drug research and development.
We propose a novel method, Graph2MDA, to predict microbe-drug associations.
arXiv Detail & Related papers (2021-08-14T07:33:05Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
computational screening has become an important way to prioritize drug combinations.
DeepDDS was superior to competitive methods by more than 16% predictive precision.
arXiv Detail & Related papers (2021-07-06T08:25:43Z) - Predicting Potential Drug Targets Using Tensor Factorisation and
Knowledge Graph Embeddings [4.415977307120617]
We have developed a new tensor factorisation model to predict potential drug targets (i.e.,genes or proteins) for diseases.
We enriched the data with gene representations learned from a drug discovery-oriented knowledge graph and applied our proposed method to predict the clinical outcomes for unseen target and dis-ease pairs.
arXiv Detail & Related papers (2021-05-20T16:19:00Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.