DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations
- URL: http://arxiv.org/abs/2107.02467v1
- Date: Tue, 6 Jul 2021 08:25:43 GMT
- Title: DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations
- Authors: J. Wang, X. Liu, S. Shen, L. Deng, H. Liu*
- Abstract summary: computational screening has become an important way to prioritize drug combinations.
DeepDDS was superior to competitive methods by more than 16% predictive precision.
- Score: 0.9854322576538699
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Drug combination therapy has become a increasingly promising method in the
treatment of cancer. However, the number of possible drug combinations is so
huge that it is hard to screen synergistic drug combinations through wet-lab
experiments. Therefore, computational screening has become an important way to
prioritize drug combinations. Graph neural network have recently shown
remarkable performance in the prediction of compound-protein interactions, but
it has not been applied to the screening of drug combinations. In this paper,
we proposed a deep learning model based on graph neural networks and attention
mechanism to identify drug combinations that can effectively inhibit the
viability of specific cancer cells. The feature embeddings of drug molecule
structure and gene expression profiles were taken as input to multi-layer
feedforward neural network to identify the synergistic drug combinations. We
compared DeepDDS with classical machine learning methods and other deep
learning-based methods on benchmark data set, and the leave-one-out
experimental results showed that DeepDDS achieved better performance than
competitive methods. Also, on an independent test set released by well-known
pharmaceutical enterprise AstraZeneca, DeepDDS was superior to competitive
methods by more than 16\% predictive precision. Furthermore, we explored the
interpretability of the graph attention network, and found the correlation
matrix of atomic features revealed important chemical substructures of drugs.
We believed that DeepDDS is an effective tool that prioritized synergistic drug
combinations for further wet-lab experiment validation.
Related papers
- A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Multiscale Topology in Interactomic Network: From Transcriptome to
Antiaddiction Drug Repurposing [0.3683202928838613]
The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies.
This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment.
arXiv Detail & Related papers (2023-12-03T04:01:38Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm [0.521420263116111]
We introduce a Graph Neural Network (textitGNN) based model for drug synergy prediction.
In contrast to conventional models, our GNN-based approach learns task-specific drug representations directly from the graph structure of the drugs.
Our work suggests that learning task-specific drug representations and leveraging a diverse dataset is a promising approach to advancing our understanding of drug-drug interaction and synergy.
arXiv Detail & Related papers (2022-10-03T10:16:29Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination
Therapy [2.446672595462589]
We propose a multimodal graph neural network that can predict the synergistic effect of drug combinations for cancer treatment.
Our model captures the representation based on the context of drugs at multiple scales based on a drug-protein interaction network and metadata.
We demonstrate that the model makes high-quality predictions over a wide range of cancer cell line tissues.
arXiv Detail & Related papers (2021-10-28T13:10:25Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z) - A Node Embedding Framework for Integration of Similarity-based Drug
Combination Prediction [7.4517333921953215]
We propose a Network Embedding framework in Multiplex Networks (NEMN) to predict synthetic drug combinations.
Based on a multiplex drug similarity network, we offered alternative methods to integrate useful information from different aspects.
For Drug combination prediction, we found seven novel drug combinations which have been validated by external sources.
arXiv Detail & Related papers (2020-02-25T02:24:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.