Interpretable and Scalable Graphical Models for Complex Spatio-temporal
Processes
- URL: http://arxiv.org/abs/2301.06021v1
- Date: Sun, 15 Jan 2023 05:39:30 GMT
- Title: Interpretable and Scalable Graphical Models for Complex Spatio-temporal
Processes
- Authors: Yu Wang
- Abstract summary: thesis focuses on data that has complex-temporal structure and on probabilistic graphical models that learn the structure in an interpretable and interpretable manner.
practical applications of the methodology are considered using real datasets.
This includes brain-connectivity analysis using data, space weather forecasting using solar imaging data, longitudinal analysis of public opinions using Twitter data, and mining of mental health related issues using TalkLife data.
- Score: 3.469001874498102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis focuses on data that has complex spatio-temporal structure and on
probabilistic graphical models that learn the structure in an interpretable and
scalable manner. We target two research areas of interest: Gaussian graphical
models for tensor-variate data and summarization of complex time-varying texts
using topic models. This work advances the state-of-the-art in several
directions. First, it introduces a new class of tensor-variate Gaussian
graphical models via the Sylvester tensor equation. Second, it develops an
optimization technique based on a fast-converging proximal alternating
linearized minimization method, which scales tensor-variate Gaussian graphical
model estimations to modern big-data settings. Third, it connects
Kronecker-structured (inverse) covariance models with spatio-temporal partial
differential equations (PDEs) and introduces a new framework for ensemble
Kalman filtering that is capable of tracking chaotic physical systems. Fourth,
it proposes a modular and interpretable framework for unsupervised and
weakly-supervised probabilistic topic modeling of time-varying data that
combines generative statistical models with computational geometric methods.
Throughout, practical applications of the methodology are considered using real
datasets. This includes brain-connectivity analysis using EEG data, space
weather forecasting using solar imaging data, longitudinal analysis of public
opinions using Twitter data, and mining of mental health related issues using
TalkLife data. We show in each case that the graphical modeling framework
introduced here leads to improved interpretability, accuracy, and scalability.
Related papers
- Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Provable Tensor Completion with Graph Information [49.08648842312456]
We introduce a novel model, theory, and algorithm for solving the dynamic graph regularized tensor completion problem.
We develop a comprehensive model simultaneously capturing the low-rank and similarity structure of the tensor.
In terms of theory, we showcase the alignment between the proposed graph smoothness regularization and a weighted tensor nuclear norm.
arXiv Detail & Related papers (2023-10-04T02:55:10Z) - Sparse Graphical Linear Dynamical Systems [1.6635799895254402]
Time-series datasets are central in machine learning with applications in numerous fields of science and engineering.
This work proposes a novel approach to bridge the gap by introducing a joint graphical modeling framework.
We present DGLASSO, a new inference method within this framework that implements an efficient block alternating majorization-minimization algorithm.
arXiv Detail & Related papers (2023-07-06T14:10:02Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Learning Time-Varying Graphs from Online Data [39.21234914444073]
This work proposes an algorithmic framework to learn time-varying graphs from online data.
It renders it model-independent, i.e., it can be theoretically analyzed in its abstract formulation.
We specialize the framework to three well-known graph learning models, namely, the Gaussian graphical model (GGM), the structural equation model (SEM), and the smoothness-based model (SBM)
arXiv Detail & Related papers (2021-10-21T09:46:44Z) - Kernel-Based Models for Influence Maximization on Graphs based on
Gaussian Process Variance Minimization [9.357483974291899]
We introduce and investigate a novel model for influence (IM) on graphs.
Data-driven approaches can be applied to determine proper kernels for this IM model.
Compared to models in this field that rely on costly Monte-Carlo simulations, our model allows for a simple and cost-efficient update strategy.
arXiv Detail & Related papers (2021-03-02T08:55:34Z) - Lossless Compression of Structured Convolutional Models via Lifting [14.63152363481139]
We introduce a simple and efficient technique to detect the symmetries and compress the neural models without loss of any information.
We demonstrate through experiments that such compression can lead to significant speedups of structured convolutional models.
arXiv Detail & Related papers (2020-07-13T08:02:27Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.