論文の概要: Hawk: An Industrial-strength Multi-label Document Classifier
- arxiv url: http://arxiv.org/abs/2301.06057v1
- Date: Sun, 15 Jan 2023 09:52:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 17:31:28.965264
- Title: Hawk: An Industrial-strength Multi-label Document Classifier
- Title(参考訳): Hawk: 産業用多ラベル文書分類器
- Authors: Arshad Javeed
- Abstract要約: 本稿では,これらの問題の重要性を詳述し,上記の問題に対処する独自のニューラルネットワークアーキテクチャを提案する。
ハイドラネットのようなアーキテクチャは、モジュール性を改善するための粒度の制御と、重み付けされた損失駆動タスク固有のヘッドを備えるように設計されている。
実験結果から,提案手法は既存の手法よりもかなり優れていることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There are a plethora of methods and algorithms that solve the classical
multi-label document classification. However, when it comes to deployment and
usage in an industry setting, most, if not all the contemporary approaches fail
to address some of the vital aspects or requirements of an ideal solution: i.
ability to operate on variable-length texts and rambling documents. ii.
catastrophic forgetting problem. iii. modularity when it comes to online
learning and updating the model. iv. ability to spotlight relevant text while
producing the prediction, i.e. visualizing the predictions. v. ability to
operate on imbalanced or skewed datasets. vi. scalability. The paper describes
the significance of these problems in detail and proposes a unique neural
network architecture that addresses the above problems. The proposed
architecture views documents as a sequence of sentences and leverages
sentence-level embeddings for input representation. A hydranet-like
architecture is designed to have granular control over and improve the
modularity, coupled with a weighted loss driving task-specific heads. In
particular, two specific mechanisms are compared: Bi-LSTM and
Transformer-based. The architecture is benchmarked on some of the popular
benchmarking datasets such as Web of Science - 5763, Web of Science - 11967,
BBC Sports, and BBC News datasets. The experimental results reveal that the
proposed model outperforms the existing methods by a substantial margin. The
ablation study includes comparisons of the impact of the attention mechanism
and the application of weighted loss functions to train the task-specific heads
in the hydranet.
- Abstract(参考訳): 古典的なマルチラベル文書分類を解く方法やアルゴリズムは数多く存在する。
しかしながら、デプロイメントと業界環境での使用に関しては、ほぼすべての現代的アプローチが理想的なソリューションの重要な側面や要件に対処できていないとは限りません。
可変長テキストとランブルドキュメントで操作する機能。
私は...
悲惨な忘れ物問題です
第3回。
オンライン学習やモデルの更新に関してはモジュール性です。
iv
予測、すなわち予測を視覚化しながら、関連するテキストにスポットライトを当てる能力。
不均衡または歪んだデータセットで操作する機能。
vi。
スケーラビリティ。
本稿では,これらの問題の重要性を詳述し,上記の問題に対処する独自のニューラルネットワークアーキテクチャを提案する。
提案アーキテクチャでは,文書を文列とみなし,入力表現に文レベルの埋め込みを利用する。
ハイドラネットのようなアーキテクチャは、モジュール性を改善するための粒度の制御と、重み付けされた損失駆動タスク固有のヘッドを備えるように設計されている。
特に、Bi-LSTMとTransformerベースの2つのメカニズムを比較する。
このアーキテクチャは、Web of Science - 5763、Web of Science - 11967、BBC Sports、BBC Newsなどの人気のあるベンチマークデータセットでベンチマークされている。
実験結果から,提案手法は既存の手法よりもかなり優れていることがわかった。
アブレーション研究は, 注意機構の影響と加重損失関数のヒドラネットにおけるタスク固有頭部の訓練への応用の比較を含む。
関連論文リスト
- Homological Convolutional Neural Networks [4.615338063719135]
本稿では,トポロジ的に制約されたネットワーク表現を通じて,データ構造構造を利用した新しいディープラーニングアーキテクチャを提案する。
5つの古典的な機械学習モデルと3つのディープラーニングモデルに対して、18のベンチマークデータセットでモデルをテストします。
論文 参考訳(メタデータ) (2023-08-26T08:48:51Z) - TopoBERT: Plug and Play Toponym Recognition Module Harnessing Fine-tuned
BERT [11.446721140340575]
TopoBERTは,一次元畳み込みニューラルネットワーク(CNN1D)と変換器による双方向表現(BERT)に基づくトポニム認識モジュールである。
TopoBERTは、他の5つのベースラインモデルと比較して最先端のパフォーマンスを達成し、追加のトレーニングなしで様々なトポニム認識タスクに適用することができる。
論文 参考訳(メタデータ) (2023-01-31T13:44:34Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
予測符号化は、当初脳の情報処理をモデル化するために開発されたメッセージパッシングフレームワークである。
本研究では,予測符号化のメッセージパス規則に依存するモデルを構築する。
提案したモデルは,帰納的タスクと帰納的タスクの両方において,標準的なモデルに匹敵する性能を示す。
論文 参考訳(メタデータ) (2022-12-09T03:58:22Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
本稿では、2つの側面の要約モデルを改善するための原則的推論フレームワークを提案する。
我々のフレームワークは、トップレベルが長距離依存性をキャプチャするドキュメントの階層的な潜在構造を前提としています。
本稿では,様々な要約データセットに対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-03-15T01:24:51Z) - Online Deep Learning based on Auto-Encoder [4.128388784932455]
オートエンコーダ(ODLAE)に基づく2段階オンライン深層学習を提案する。
復元損失を考慮した自動エンコーダを用いて,インスタンスの階層的潜在表現を抽出する。
我々は,各隠れ層の分類結果を融合して得られる出力レベル融合戦略と,隠れ層の出力を融合させる自己保持機構を利用した特徴レベル融合戦略の2つの融合戦略を考案した。
論文 参考訳(メタデータ) (2022-01-19T02:14:57Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - FitVid: Overfitting in Pixel-Level Video Prediction [117.59339756506142]
われわれはFitVidという新しいアーキテクチャを導入し、一般的なベンチマークに厳しいオーバーフィッティングを行えるようにした。
FitVidは、4つの異なるメトリクスで4つの異なるビデオ予測ベンチマークで現在の最先端モデルを上回っている。
論文 参考訳(メタデータ) (2021-06-24T17:20:21Z) - Mapping the Internet: Modelling Entity Interactions in Complex
Heterogeneous Networks [0.0]
サンプル表現、モデル定義、トレーニングのための汎用性のある統一フレームワークHMill'を提案します。
フレームワークに実装されたモデルによって実現されたすべての関数の集合に対する普遍近似定理の拡張を示す。
このフレームワークを使ってサイバーセキュリティドメインから3つの異なる問題を解決する。
論文 参考訳(メタデータ) (2021-04-19T21:32:44Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。