論文の概要: Bayesian Models of Functional Connectomics and Behavior
- arxiv url: http://arxiv.org/abs/2301.06182v1
- Date: Sun, 15 Jan 2023 20:42:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 17:03:18.538933
- Title: Bayesian Models of Functional Connectomics and Behavior
- Title(参考訳): 機能コネクティクスと行動のベイズモデル
- Authors: Niharika Shimona D'Souza
- Abstract要約: 共同表現学習と予測のための完全ベイズ的定式化を提案する。
自閉症スペクトラム障害患者に対するr-fMRIの有用性について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of jointly analysing functional connectomics and behavioral data
is extremely challenging owing to the complex interactions between the two
domains. In addition, clinical rs-fMRI studies often have to contend with
limited samples, especially in the case of rare disorders. This data-starved
regimen can severely restrict the reliability of classical machine learning or
deep learning designed to predict behavior from connectivity data. In this
work, we approach this problem from the lens of representation learning and
bayesian modeling. To model the distributional characteristics of the domains,
we first examine the ability of approaches such as Bayesian Linear Regression,
Stochastic Search Variable Selection after performing a classical covariance
decomposition. Finally, we present a fully bayesian formulation for joint
representation learning and prediction. We present preliminary results on a
subset of a publicly available clinical rs-fMRI study on patients with Autism
Spectrum Disorder.
- Abstract(参考訳): 機能コネクトミクスと行動データの共同分析の問題は、2つのドメイン間の複雑な相互作用のために非常に困難である。
さらに、臨床 rs-fMRI 研究は、特にまれな疾患の場合、限られたサンプルと競合することが多い。
このデータスターベッド・プリームは、接続データから振る舞いを予測するように設計された古典的な機械学習やディープラーニングの信頼性を著しく制限することができる。
本研究では,この問題を表現学習とベイズモデリングのレンズからアプローチする。
領域の分布特性をモデル化するために, 古典共分散分解を行った後, ベイズ線形回帰, 確率探索変数選択などのアプローチの能力について検討した。
最後に,共同表現学習と予測のための完全ベイズ式を提案する。
自閉症スペクトラム障害患者に対するr-fMRIによる臨床研究のサブセットについて予備的検討を行った。
関連論文リスト
- Inverse decision-making using neural amortized Bayesian actors [19.128377007314317]
我々は、教師なしの方法で幅広いパラメータ設定で訓練されたニューラルネットワークを用いてベイズアクターを記憶する。
推定された後続分布は,その存在する解析解を用いて得られた分布と密接に一致していることを示す。
そして、より複雑なコスト関数において、先行とコストの間の識別可能性の問題が発生することを示した。
論文 参考訳(メタデータ) (2024-09-04T10:31:35Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - The Relevance Feature and Vector Machine for health applications [0.11538034264098687]
本稿では,臨床研究における脂肪データ問題に対処する新しいモデルを提案する。
モデル機能は、太いデータ問題のあるいくつかの医療データセットの最先端モデルに対してテストされる。
論文 参考訳(メタデータ) (2024-02-11T01:21:56Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
我々は,抑うつ,抑うつ症状,および,胸腺で収集された音声,表情,認知ゲームデータから得られる特徴の関連性を把握するためにベイズ的枠組みを適用した。
論文 参考訳(メタデータ) (2022-11-09T14:48:13Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - Time-Resolved fMRI Shared Response Model using Gaussian Process Factor
Analysis [19.237759421319957]
そこで我々は,S-GPFA(Shared Gaussian Process Factor Analysis)と呼ばれる新しいモデルを導入する。
シミュレーションデータを用いて地中真理潜伏構造を明らかにする上で,本モデルの有効性を実証し,公開可能なRaiderおよびSherlockデータセット上での時間分割マッチングとオブジェクト間類似性の実験的性能を再現した。
論文 参考訳(メタデータ) (2020-06-10T00:15:01Z) - Supervised Autoencoders Learn Robust Joint Factor Models of Neural
Activity [2.8402080392117752]
神経科学の応用は、行動結果とともに異なる領域の脳活動に対応する高次元予測因子を収集する。
予測因子と結果の結合因子モデルは自然であるが、これらのモデルの最大推定値は、モデルが不特定である場合に実際に苦労することがある。
本稿では,教師付きオートエンコーダに基づく代替推論手法を提案する。潜在因子に確率分布を配置するのではなく,高次元予測器の未知関数として定義する。
論文 参考訳(メタデータ) (2020-04-10T19:31:57Z) - Generalisation error in learning with random features and the hidden
manifold model [23.71637173968353]
合成データセットの一般線形回帰と分類について検討した。
我々は,高次元構造を考察し,統計物理学からのレプリカ法を用いる。
閾値をピークとしたロジスティック回帰のためのいわゆる二重降下挙動を得る方法を示す。
隠れ多様体モデルにより生成されたデータにおいて相関関係が果たす役割について論じる。
論文 参考訳(メタデータ) (2020-02-21T14:49:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。