Modelling human logical reasoning process in dynamic environmental
stress with cognitive agents
- URL: http://arxiv.org/abs/2301.06216v3
- Date: Mon, 4 Dec 2023 21:16:29 GMT
- Title: Modelling human logical reasoning process in dynamic environmental
stress with cognitive agents
- Authors: Songlin Xu and Xinyu Zhang
- Abstract summary: We propose a cognitive agent integrating drift-diffusion with deep reinforcement learning to simulate granular stress effects on logical reasoning process.
Leveraging a large dataset of 21,157 logical responses, we investigate performance impacts of dynamic stress.
Quantitatively, the framework improves cognition modelling by capturing both subject-specific and stimuli-specific behavioural differences.
Overall, this work demonstrates a powerful, data-driven methodology to simulate and understand the vagaries of human logical reasoning process in dynamic contexts.
- Score: 13.171768256928509
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modelling human cognition can provide key insights into behavioral dynamics
under changing conditions. This enables synthetic data generation and guides
adaptive interventions for cognitive regulation. Challenges arise when
environments are highly dynamic, obscuring stimulus-behavior relationships. We
propose a cognitive agent integrating drift-diffusion with deep reinforcement
learning to simulate granular stress effects on logical reasoning process.
Leveraging a large dataset of 21,157 logical responses, we investigate
performance impacts of dynamic stress. This prior knowledge informed model
design and evaluation. Quantitatively, the framework improves cognition
modelling by capturing both subject-specific and stimuli-specific behavioural
differences. Qualitatively, it captures general trends in human logical
reasoning under stress. Our approach is extensible to examining diverse
environmental influences on cognition and behavior. Overall, this work
demonstrates a powerful, data-driven methodology to simulate and understand the
vagaries of human logical reasoning process in dynamic contexts.
Related papers
- Dynamic planning in hierarchical active inference [0.0]
We refer to the ability of the human brain to infer and impose motor trajectories related to cognitive decisions.
This study focuses on the topic of dynamic planning in active inference.
arXiv Detail & Related papers (2024-02-18T17:32:53Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Decoding Neural Activity to Assess Individual Latent State in
Ecologically Valid Contexts [1.1059590443280727]
We use data from two highly controlled laboratory paradigms to train two separate domain-generalized models.
We derive estimates of the underlying latent state and associated patterns of neural activity.
arXiv Detail & Related papers (2023-04-18T15:15:00Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
We study interpretability of compact neural policies through the lens of disentangled representation.
We leverage decision trees to obtain factors of variation for disentanglement in robot learning.
We introduce interpretability metrics that measure disentanglement of learned neural dynamics.
arXiv Detail & Related papers (2022-10-13T01:10:41Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Inference of Affordances and Active Motor Control in Simulated Agents [0.5161531917413706]
We introduce an output-probabilistic, temporally predictive, modular artificial neural network architecture.
We show that our architecture develops latent states that can be interpreted as affordance maps.
In combination with active inference, we show that flexible, goal-directed behavior can be invoked.
arXiv Detail & Related papers (2022-02-23T14:13:04Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Tracking Emotions: Intrinsic Motivation Grounded on Multi-Level
Prediction Error Dynamics [68.8204255655161]
We discuss how emotions arise when differences between expected and actual rates of progress towards a goal are experienced.
We present an intrinsic motivation architecture that generates behaviors towards self-generated and dynamic goals.
arXiv Detail & Related papers (2020-07-29T06:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.