From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning
- URL: http://arxiv.org/abs/2310.18364v1
- Date: Tue, 24 Oct 2023 19:46:04 GMT
- Title: From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning
- Authors: Zheyuan Zhang, Shane Storks, Fengyuan Hu, Sungryull Sohn, Moontae Lee,
Honglak Lee, Joyce Chai
- Abstract summary: Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
- Score: 66.98861219674039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained language models (PLMs) have shown impressive performance in
various language tasks. However, they are prone to spurious correlations, and
often generate illusory information. In real-world applications, PLMs should
justify decisions with formalized, coherent reasoning chains, but this
challenge remains under-explored. Cognitive psychology theorizes that humans
are capable of utilizing fast and intuitive heuristic thinking to make
decisions based on past experience, then rationalizing the decisions through
slower and deliberative analytic reasoning. We incorporate these interlinked
dual processes in fine-tuning and in-context learning with PLMs, applying them
to two language understanding tasks that require coherent physical commonsense
reasoning. We show that our proposed Heuristic-Analytic Reasoning (HAR)
strategies drastically improve the coherence of rationalizations for model
decisions, yielding state-of-the-art results on Tiered Reasoning for Intuitive
Physics (TRIP). We also find that this improved coherence is a direct result of
more faithful attention to relevant language context in each step of reasoning.
Our findings suggest that human-like reasoning strategies can effectively
improve the coherence and reliability of PLM reasoning.
Related papers
- Unlocking Structured Thinking in Language Models with Cognitive Prompting [0.0]
We propose cognitive prompting as a novel approach to guide problem-solving in large language models.
We evaluate the effectiveness of cognitive prompting on Meta's LLaMA models.
arXiv Detail & Related papers (2024-10-03T19:53:47Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - A Systematic Analysis of Large Language Models as Soft Reasoners: The Case of Syllogistic Inferences [5.141416267381492]
We consider the case of syllogistic reasoning, an area of deductive reasoning studied extensively in logic and cognitive psychology.
We investigate the effects of chain-of-thought reasoning, in-context learning, and supervised fine-tuning on syllogistic reasoning.
Our results suggest that the behavior of pre-trained LLMs can be explained by cognitive science.
arXiv Detail & Related papers (2024-06-17T08:59:04Z) - Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning [25.732397636695882]
We show that large language models (LLMs) display reasoning patterns akin to those observed in humans.
Our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning.
arXiv Detail & Related papers (2024-02-20T12:58:14Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
We explore the use of intuitive language-based abstractions to support analogy in AI systems.
Specifically, we apply large pre-trained language models (PLMs) to visual Raven's Progressive Matrices ( RPM)
We find that PLMs exhibit a striking capacity for zero-shot relational reasoning, exceeding human performance and nearing supervised vision-based methods.
arXiv Detail & Related papers (2023-05-28T04:22:26Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
Large language models (LLMs) have recently demonstrated significant potential in mathematical abilities.
LLMs currently have difficulty in bridging perception, language understanding and reasoning capabilities.
This paper presents a novel method for integrating LLMs into the abductive learning framework.
arXiv Detail & Related papers (2023-04-21T16:23:47Z) - ReAct: Synergizing Reasoning and Acting in Language Models [44.746116256516046]
We show that large language models (LLMs) can generate both reasoning traces and task-specific actions in an interleaved manner.
We apply our approach, named ReAct, to a diverse set of language and decision making tasks.
ReAct overcomes issues of hallucination and error propagation prevalent in chain-of-thought reasoning by interacting with a simple Wikipedia API.
arXiv Detail & Related papers (2022-10-06T01:00:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.