Deep Learning Models to Study Sentence Comprehension in the Human Brain
- URL: http://arxiv.org/abs/2301.06340v1
- Date: Mon, 16 Jan 2023 10:31:25 GMT
- Title: Deep Learning Models to Study Sentence Comprehension in the Human Brain
- Authors: Sophie Arana, Jacques Pesnot Lerousseau and Peter Hagoort
- Abstract summary: Recent artificial neural networks that process natural language achieve unprecedented performance in tasks requiring sentence-level understanding.
We review works that compare these artificial language models with human brain activity and we assess the extent to which this approach has improved our understanding of the neural processes involved in natural language comprehension.
- Score: 0.1503974529275767
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent artificial neural networks that process natural language achieve
unprecedented performance in tasks requiring sentence-level understanding. As
such, they could be interesting models of the integration of linguistic
information in the human brain. We review works that compare these artificial
language models with human brain activity and we assess the extent to which
this approach has improved our understanding of the neural processes involved
in natural language comprehension. Two main results emerge. First, the neural
representation of word meaning aligns with the context-dependent, dense word
vectors used by the artificial neural networks. Second, the processing
hierarchy that emerges within artificial neural networks broadly matches the
brain, but is surprisingly inconsistent across studies. We discuss current
challenges in establishing artificial neural networks as process models of
natural language comprehension. We suggest exploiting the highly structured
representational geometry of artificial neural networks when mapping
representations to brain data.
Related papers
- Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
This paper proposes a novel post-hoc framework for generating semantic explanations of neurons with large foundation models.
Our framework is designed to be compatible with various model architectures and datasets, automated and scalable neuron interpretation.
arXiv Detail & Related papers (2023-10-16T17:04:51Z) - Tuning In to Neural Encoding: Linking Human Brain and Artificial
Supervised Representations of Language [31.636016502455693]
We generate supervised representations on eight Natural Language Understanding (NLU) tasks using prompt-tuning.
We demonstrate that prompt-tuning yields representations that better predict neural responses to Chinese stimuli than traditional fine-tuning.
arXiv Detail & Related papers (2023-10-05T06:31:01Z) - Why can neural language models solve next-word prediction? A
mathematical perspective [53.807657273043446]
We study a class of formal languages that can be used to model real-world examples of English sentences.
Our proof highlights the different roles of the embedding layer and the fully connected component within the neural language model.
arXiv Detail & Related papers (2023-06-20T10:41:23Z) - BrainBERT: Self-supervised representation learning for intracranial
recordings [18.52962864519609]
We create a reusable Transformer, BrainBERT, for intracranial recordings bringing modern representation learning approaches to neuroscience.
Much like in NLP and speech recognition, this Transformer enables classifying complex concepts, with higher accuracy and with much less data.
In the future, far more concepts will be decodable from neural recordings by using representation learning, potentially unlocking the brain like language models unlocked language.
arXiv Detail & Related papers (2023-02-28T07:40:37Z) - Interpretability of Neural Network With Physiological Mechanisms [5.1971653175509145]
Deep learning continues to play as a powerful state-of-art technique that has achieved extraordinary accuracy levels in various domains of regression and classification tasks.
The original goal of proposing the neural network model is to improve the understanding of complex human brains using a mathematical expression approach.
Recent deep learning techniques continue to lose the interpretations of its functional process by being treated mostly as a black-box approximator.
arXiv Detail & Related papers (2022-03-24T21:40:04Z) - Connecting Neural Response measurements & Computational Models of
language: a non-comprehensive guide [5.523143941738335]
Recent advances in language modelling and in neuroimaging promise potential improvements in the investigation of language's neurobiology.
This survey traces a line from early research linking Event Related Potentials and complexity measures derived from simple language models to contemporary studies employing Artificial Neural Network models trained on large corpora.
arXiv Detail & Related papers (2022-03-10T11:24:54Z) - Emergence of Machine Language: Towards Symbolic Intelligence with Neural
Networks [73.94290462239061]
We propose to combine symbolism and connectionism principles by using neural networks to derive a discrete representation.
By designing an interactive environment and task, we demonstrated that machines could generate a spontaneous, flexible, and semantic language.
arXiv Detail & Related papers (2022-01-14T14:54:58Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
We show a low-dimensional structure where language models and translation models smoothly interpolate between word embeddings, syntactic and semantic tasks, and future word embeddings.
We find that this representation embedding can predict how well each individual feature space maps to human brain responses to natural language stimuli recorded using fMRI.
This suggests that the embedding captures some part of the brain's natural language representation structure.
arXiv Detail & Related papers (2021-06-09T22:59:12Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
We studied whether a modern artificial neural network trained with "deep learning" methods mimics a central aspect of human sentence processing.
Although the network was solely trained to predict the next word in a large corpus, analysis showed the emergence of specialized units that successfully handled local and long-distance syntactic agreement.
We tested the model's predictions in a behavioral experiment where humans detected violations in number agreement in sentences with systematic variations in the singular/plural status of multiple nouns.
arXiv Detail & Related papers (2020-06-19T12:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.