Connecting Neural Response measurements & Computational Models of
language: a non-comprehensive guide
- URL: http://arxiv.org/abs/2203.05300v1
- Date: Thu, 10 Mar 2022 11:24:54 GMT
- Title: Connecting Neural Response measurements & Computational Models of
language: a non-comprehensive guide
- Authors: Mostafa Abdou
- Abstract summary: Recent advances in language modelling and in neuroimaging promise potential improvements in the investigation of language's neurobiology.
This survey traces a line from early research linking Event Related Potentials and complexity measures derived from simple language models to contemporary studies employing Artificial Neural Network models trained on large corpora.
- Score: 5.523143941738335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the neural basis of language comprehension in the brain has
been a long-standing goal of various scientific research programs. Recent
advances in language modelling and in neuroimaging methodology promise
potential improvements in both the investigation of language's neurobiology and
in the building of better and more human-like language models. This survey
traces a line from early research linking Event Related Potentials and
complexity measures derived from simple language models to contemporary studies
employing Artificial Neural Network models trained on large corpora in
combination with neural response recordings from multiple modalities using
naturalistic stimuli.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Navigating Brain Language Representations: A Comparative Analysis of Neural Language Models and Psychologically Plausible Models [29.50162863143141]
We compare encoding performance of various neural language models and psychologically plausible models.
Surprisingly, our findings revealed that psychologically plausible models outperformed neural language models across diverse contexts.
arXiv Detail & Related papers (2024-04-30T08:48:07Z) - Language Generation from Brain Recordings [68.97414452707103]
We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
arXiv Detail & Related papers (2023-11-16T13:37:21Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
This paper proposes a novel post-hoc framework for generating semantic explanations of neurons with large foundation models.
Our framework is designed to be compatible with various model architectures and datasets, automated and scalable neuron interpretation.
arXiv Detail & Related papers (2023-10-16T17:04:51Z) - Deep Learning Models to Study Sentence Comprehension in the Human Brain [0.1503974529275767]
Recent artificial neural networks that process natural language achieve unprecedented performance in tasks requiring sentence-level understanding.
We review works that compare these artificial language models with human brain activity and we assess the extent to which this approach has improved our understanding of the neural processes involved in natural language comprehension.
arXiv Detail & Related papers (2023-01-16T10:31:25Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
We conjecture that multilingual pre-trained models can derive language-universal abstractions about grammar.
We conduct the first large-scale empirical study over 43 languages and 14 morphosyntactic categories with a state-of-the-art neuron-level probe.
arXiv Detail & Related papers (2022-05-04T12:22:31Z) - Dependency-based Mixture Language Models [53.152011258252315]
We introduce the Dependency-based Mixture Language Models.
In detail, we first train neural language models with a novel dependency modeling objective.
We then formulate the next-token probability by mixing the previous dependency modeling probability distributions with self-attention.
arXiv Detail & Related papers (2022-03-19T06:28:30Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z) - Does injecting linguistic structure into language models lead to better
alignment with brain recordings? [13.880819301385854]
We evaluate whether language models align better with brain recordings if their attention is biased by annotations from syntactic or semantic formalisms.
Our proposed approach enables the evaluation of more targeted hypotheses about the composition of meaning in the brain.
arXiv Detail & Related papers (2021-01-29T14:42:02Z) - Emergence of Separable Manifolds in Deep Language Representations [26.002842878797765]
Deep neural networks (DNNs) have shown much empirical success in solving perceptual tasks across various cognitive modalities.
Recent studies report considerable similarities between representations extracted from task-optimized DNNs and neural populations in the brain.
DNNs have subsequently become a popular model class to infer computational principles underlying complex cognitive functions.
arXiv Detail & Related papers (2020-06-01T17:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.