Two-step relaxation in local many-body Floquet systems
- URL: http://arxiv.org/abs/2301.06395v1
- Date: Mon, 16 Jan 2023 12:31:18 GMT
- Title: Two-step relaxation in local many-body Floquet systems
- Authors: Marko Znidaric
- Abstract summary: We show that in many situations relaxation proceeds in two phases with exponential decay but different relaxation rates.
Namely, in the thermodynamic limit the relaxtion rate exhibits a jump at a critical time proportional to system's size.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We want to understand how relaxation process from an initial non-generic
state proceeds towards a long-time typical state reached under unitary quantum
evolution. One would expect that after some initial correlation time relaxation
will be a simple exponential decay with constant decay rate. We show that this
is not necessarily the case. Studying various Floquet system where the
propagator is composed of individual fixed two-qubit gates, and focusing on
purity and out-of-time-ordered correlation functions, we find that in many
situations relaxation proceeds in two phases with exponential decay but
different relaxation rates. Namely, in the thermodynamic limit the relaxtion
rate exhibits a jump at a critical time proportional to system's size.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Fluctuations and Persistence in Quantum Diffusion on Regular Lattices [7.218054628599005]
We investigate quantum persistence by analyzing amplitude and phase fluctuations of the wave function governed by the time-dependent free-particle Schr"odinger equation.
In analogy with classical diffusion, the persistence probability is defined as the probability that the local (amplitude or phase) fluctuations have not changed sign up to time $t$.
arXiv Detail & Related papers (2024-02-08T19:46:56Z) - Understanding multiple timescales in quantum dissipative dynamics:
Insights from quantum trajectories [0.0]
We show that open quantum systems with nearly degenerate energy levels exhibit long-lived metastable states in the approach to equilibrium.
This is a result of dramatic separation of timescales due to differences between Liouvillian eigenvalues.
arXiv Detail & Related papers (2024-02-07T02:06:51Z) - Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Accelerated Decay due to Operator Spreading in Bulk-Dissipated Quantum Systems [4.604003661048267]
We present a collective relaxation dynamics of autocorrelation functions in the stationary state.
Our theory predicts that a bulk-dissipated system generically shows an accelerated decay before the regime due to the scrambling of quantum information associated with the operator spreading.
arXiv Detail & Related papers (2023-09-07T05:35:08Z) - The correlational entropy production during the local relaxation in a
many body system with Ising interactions [0.07589330826724187]
Isolated quantum systems follow the unitary evolution, which guarantees the full many body state always keeps a constant entropy.
We consider the local dynamics of finite many body system with Ising interaction.
arXiv Detail & Related papers (2022-11-06T07:34:20Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Spread of Correlations in Strongly Disordered Lattice Systems with
Long-Range Coupling [0.0]
We investigate the spread of correlations carried by an excitation in a 1-dimensional lattice system with high on-site energy disorder.
The increase in correlation between the initially quenched node and a given node exhibits three phases: quadratic in time, linear in time, and saturation.
arXiv Detail & Related papers (2021-06-15T15:47:20Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.