Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
- URL: http://arxiv.org/abs/2301.06428v3
- Date: Tue, 14 May 2024 10:47:26 GMT
- Title: Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
- Authors: Lesi Chen, Jing Xu, Luo Luo,
- Abstract summary: We consider the problem of the form $min_x in mathbbRd f(x) triangleq mathbbE_xi [Fxi]$inf(x)$ Lipschitz.
The recently proposed gradient-free method requires at most $mathcalO( L4 d3/2 epsilon-4 + Goldstein L d3/2 delta-1 epsilon-4)$ zeroth-order complexity
- Score: 20.54801745090522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the optimization problem of the form $\min_{x \in \mathbb{R}^d} f(x) \triangleq \mathbb{E}_{\xi} [F(x; \xi)]$, where the component $F(x;\xi)$ is $L$-mean-squared Lipschitz but possibly nonconvex and nonsmooth. The recently proposed gradient-free method requires at most $\mathcal{O}( L^4 d^{3/2} \epsilon^{-4} + \Delta L^3 d^{3/2} \delta^{-1} \epsilon^{-4})$ stochastic zeroth-order oracle complexity to find a $(\delta,\epsilon)$-Goldstein stationary point of objective function, where $\Delta = f(x_0) - \inf_{x \in \mathbb{R}^d} f(x)$ and $x_0$ is the initial point of the algorithm. This paper proposes a more efficient algorithm using stochastic recursive gradient estimators, which improves the complexity to $\mathcal{O}(L^3 d^{3/2} \epsilon^{-3}+ \Delta L^2 d^{3/2} \delta^{-1} \epsilon^{-3})$.
Related papers
- Quantum Algorithms for Non-smooth Non-convex Optimization [30.576546266390714]
This paper considers the problem for finding the $(,epsilon)$-Goldstein stationary point of Lipschitz continuous objective.
We construct a zeroth-order quantum estimator for the surrogate oracle function.
arXiv Detail & Related papers (2024-10-21T16:52:26Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Convergence of Alternating Gradient Descent for Matrix Factorization [5.439020425819001]
We consider alternating gradient descent (AGD) with fixed step size applied to the asymmetric matrix factorization objective.
We show that, for a rank-$r$ matrix $mathbfA in mathbbRm times n$, smoothness $C$ in the complexity $T$ to be an absolute constant.
arXiv Detail & Related papers (2023-05-11T16:07:47Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
We show a proof to show DEAREST requires at most $mathcal O(+sqrtmnLvarepsilon-2)$ first-order oracle (IFO) calls and $mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$ communication rounds.
arXiv Detail & Related papers (2022-10-25T11:37:11Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - The First Optimal Algorithm for Smooth and
Strongly-Convex-Strongly-Concave Minimax Optimization [88.91190483500932]
In this paper, we revisit the smooth and strongly-strongly-concave minimax optimization problem.
Existing state-of-the-art methods do not match lower bound $Omegaleft(sqrtkappa_xkappa_ylog3 (kappa_xkappa_y)logfrac1epsilonright)$.
We fix this fundamental issue by providing the first algorithm with $mathcalOleft( sqrtkappa_xkappa_ylog
arXiv Detail & Related papers (2022-05-11T17:33:07Z) - Faster Perturbed Stochastic Gradient Methods for Finding Local Minima [92.99933928528797]
We propose tttPullback, a faster perturbed gradient framework for finding local minima.
We show that Pullback with gradient estimators such as SARAH/SP and STORM can find $(epsilon, epsilon_H)$approximate local minima within $tilde O(epsilon-3 + H-6)$.
The core idea of our framework is a step-size pullback'' scheme to control the average movement of the gradient evaluations.
arXiv Detail & Related papers (2021-10-25T07:20:05Z) - Stochastic Recursive Gradient Descent Ascent for Stochastic
Nonconvex-Strongly-Concave Minimax Problems [36.645753881826955]
In this paper, we propose a novel method called RecurEnti Ascent (SREDA), which estimates more efficiently using variance.
This method achieves the best known for this problem.
arXiv Detail & Related papers (2020-01-11T09:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.