Scaling Deep Networks with the Mesh Adaptive Direct Search algorithm
- URL: http://arxiv.org/abs/2301.06641v1
- Date: Tue, 17 Jan 2023 00:08:03 GMT
- Title: Scaling Deep Networks with the Mesh Adaptive Direct Search algorithm
- Authors: Dounia Lakhmiri, Mahdi Zolnouri, Vahid Partovi Nia, Christophe Tribes,
S\'ebastien Le Digabel
- Abstract summary: We automate the design of a light deep neural network for image classification using the emphMesh Adaptive Direct Search(MADS) algorithm.
Our tests show competitive compression rates with reduced numbers of trials.
- Score: 3.3073775218038883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks are getting larger. Their implementation on edge and IoT
devices becomes more challenging and moved the community to design lighter
versions with similar performance. Standard automatic design tools such as
\emph{reinforcement learning} and \emph{evolutionary computing} fundamentally
rely on cheap evaluations of an objective function. In the neural network
design context, this objective is the accuracy after training, which is
expensive and time-consuming to evaluate. We automate the design of a light
deep neural network for image classification using the \emph{Mesh Adaptive
Direct Search}(MADS) algorithm, a mature derivative-free optimization method
that effectively accounts for the expensive blackbox nature of the objective
function to explore the design space, even in the presence of constraints.Our
tests show competitive compression rates with reduced numbers of trials.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - Growing Tiny Networks: Spotting Expressivity Bottlenecks and Fixing Them Optimally [2.645067871482715]
In machine learning tasks, one searches for an optimal function within a certain functional space.
This way forces the evolution of the function during training to lie within the realm of what is expressible with the chosen architecture.
We show that the information about desirable architectural changes, due to expressivity bottlenecks can be extracted from %the backpropagation.
arXiv Detail & Related papers (2024-05-30T08:23:56Z) - Optimizing Sensor Network Design for Multiple Coverage [0.9668407688201359]
We introduce a new objective function for the greedy (next-best-view) algorithm to design efficient and robust sensor networks.
We also introduce a Deep Learning model to accelerate the algorithm for near real-time computations.
arXiv Detail & Related papers (2024-05-15T05:13:20Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
Auto-Train-Once (ATO) is an innovative network pruning algorithm designed to automatically reduce the computational and storage costs of DNNs.
We provide a comprehensive convergence analysis as well as extensive experiments, and the results show that our approach achieves state-of-the-art performance across various model architectures.
arXiv Detail & Related papers (2024-03-21T02:33:37Z) - Accelerating Deep Neural Networks via Semi-Structured Activation
Sparsity [0.0]
Exploiting sparsity in the network's feature maps is one of the ways to reduce its inference latency.
We propose a solution to induce semi-structured activation sparsity exploitable through minor runtime modifications.
Our approach yields a speed improvement of $1.25 times$ with a minimal accuracy drop of $1.1%$ for the ResNet18 model on the ImageNet dataset.
arXiv Detail & Related papers (2023-09-12T22:28:53Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
We propose a differentiable quantity, named GradCosine, with theoretical insights to evaluate the initial state of a neural network.
We show that both the training and test performance of a network can be improved by maximizing GradCosine under norm constraint.
Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost.
arXiv Detail & Related papers (2022-10-12T06:49:16Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Neural Architecture Search for Efficient Uncalibrated Deep Photometric
Stereo [105.05232615226602]
We leverage differentiable neural architecture search (NAS) strategy to find uncalibrated PS architecture automatically.
Experiments on the DiLiGenT dataset show that the automatically searched neural architectures performance compares favorably with the state-of-the-art uncalibrated PS methods.
arXiv Detail & Related papers (2021-10-11T21:22:17Z) - CONet: Channel Optimization for Convolutional Neural Networks [33.58529066005248]
We study channel size optimization in convolutional neural networks (CNN)
We introduce an efficient dynamic scaling algorithm -- CONet -- that automatically optimize channel sizes across network layers for a given CNN.
We conduct experiments on CIFAR10/100 and ImageNet datasets and show that CONet can find efficient and accurate architectures searched in ResNet, DARTS, and DARTS+ spaces.
arXiv Detail & Related papers (2021-08-15T21:48:25Z) - AutoPruning for Deep Neural Network with Dynamic Channel Masking [28.018077874687343]
We propose a learning based auto pruning algorithm for deep neural network.
A two objectives' problem that aims for the the weights and the best channels for each layer is first formulated.
An alternative optimization approach is then proposed to derive the optimal channel numbers and weights simultaneously.
arXiv Detail & Related papers (2020-10-22T20:12:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.