Distributed LSTM-Learning from Differentially Private Label Proportions
- URL: http://arxiv.org/abs/2301.07101v1
- Date: Sun, 15 Jan 2023 22:11:07 GMT
- Title: Distributed LSTM-Learning from Differentially Private Label Proportions
- Authors: Timon Sachweh, Daniel Boiar, Thomas Liebig
- Abstract summary: We will propose two efficient models which use Differential Privacy and decentralized LSTM-Learning: One.
The evaluation will show the tradeoff between performance and data privacy.
- Score: 0.9281671380673306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data privacy and decentralised data collection has become more and more
popular in recent years. In order to solve issues with privacy, communication
bandwidth and learning from spatio-temporal data, we will propose two efficient
models which use Differential Privacy and decentralized LSTM-Learning: One, in
which a Long Short Term Memory (LSTM) model is learned for extracting local
temporal node constraints and feeding them into a Dense-Layer
(LabelProportionToLocal). The other approach extends the first one by fetching
histogram data from the neighbors and joining the information with the LSTM
output (LabelProportionToDense). For evaluation two popular datasets are used:
Pems-Bay and METR-LA. Additionally, we provide an own dataset, which is based
on LuST. The evaluation will show the tradeoff between performance and data
privacy.
Related papers
- Feature Selection from Differentially Private Correlations [35.187113265093615]
High-dimensional regression can leak information about individual datapoints in a dataset.
We employ a correlations-based order statistic to choose important features from a dataset and privatize them.
We find that our method significantly outperforms the established baseline for private feature selection on many datasets.
arXiv Detail & Related papers (2024-08-20T13:54:07Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - On Pretraining Data Diversity for Self-Supervised Learning [57.91495006862553]
We explore the impact of training with more diverse datasets on the performance of self-supervised learning (SSL) under a fixed computational budget.
Our findings consistently demonstrate that increasing pretraining data diversity enhances SSL performance, albeit only when the distribution distance to the downstream data is minimal.
arXiv Detail & Related papers (2024-03-20T17:59:58Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - LSTMSPLIT: Effective SPLIT Learning based LSTM on Sequential Time-Series
Data [3.9011223632827385]
We propose a new approach, LSTMSPLIT, that uses SL architecture with an LSTM network to classify time-series data with multiple clients.
The proposed method, LSTMSPLIT, has achieved better or reasonable accuracy compared to the Split-1DCNN method using the electrocardiogram dataset and the human activity recognition dataset.
arXiv Detail & Related papers (2022-03-08T11:44:12Z) - Pseudo-Labeled Auto-Curriculum Learning for Semi-Supervised Keypoint
Localization [88.74813798138466]
Localizing keypoints of an object is a basic visual problem.
Supervised learning of a keypoint localization network often requires a large amount of data.
We propose to automatically select reliable pseudo-labeled samples with a series of dynamic thresholds.
arXiv Detail & Related papers (2022-01-21T09:51:58Z) - Learning a Self-Expressive Network for Subspace Clustering [15.096251922264281]
We propose a novel framework for subspace clustering, termed Self-Expressive Network (SENet), which employs a properly designed neural network to learn a self-expressive representation of the data.
Our SENet can not only learn the self-expressive coefficients with desired properties on the training data, but also handle out-of-sample data.
In particular, SENet yields highly competitive performance on MNIST, Fashion MNIST and Extended MNIST and state-of-the-art performance on CIFAR-10.
arXiv Detail & Related papers (2021-10-08T18:06:06Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z) - Privacy-Aware Time-Series Data Sharing with Deep Reinforcement Learning [33.42328078385098]
We study the privacy-utility trade-off (PUT) in time-series data sharing.
Methods that preserve the privacy for the current time may leak significant amount of information at the trace level.
We consider sharing the distorted version of a user's true data sequence with an untrusted third party.
arXiv Detail & Related papers (2020-03-04T18:47:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.