ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation
- URL: http://arxiv.org/abs/2006.13461v3
- Date: Fri, 7 Aug 2020 01:18:45 GMT
- Title: ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation
- Authors: Xinyue Huo, Lingxi Xie, Jianzhong He, Zijie Yang and Qi Tian
- Abstract summary: We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
- Score: 99.90263375737362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medical image analysis, semi-supervised learning is an effective method to
extract knowledge from a small amount of labeled data and a large amount of
unlabeled data. This paper focuses on a popular pipeline known as self
learning, and points out a weakness named lazy learning that refers to the
difficulty for a model to learn from the pseudo labels generated by itself. To
alleviate this issue, we propose ATSO, an asynchronous version of
teacher-student optimization. ATSO partitions the unlabeled data into two
subsets and alternately uses one subset to fine-tune the model and updates the
label on the other subset. We evaluate ATSO on two popular medical image
segmentation datasets and show its superior performance in various
semi-supervised settings. With slight modification, ATSO transfers well to
natural image segmentation for autonomous driving data.
Related papers
- Segment Together: A Versatile Paradigm for Semi-Supervised Medical Image
Segmentation [17.69933345468061]
scarcity has become a major obstacle for training powerful deep-learning models for medical image segmentation.
We introduce a textbfVersatile textbfSemi-supervised framework to exploit more unlabeled data for semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-11-20T11:35:52Z) - Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
We propose the PLGDF framework, which builds upon the mean teacher network for segmenting medical images with less annotation.
We propose a novel pseudo-label utilization scheme, which combines labeled and unlabeled data to augment the dataset effectively.
Our framework yields superior performance compared to six state-of-the-art semi-supervised learning methods.
arXiv Detail & Related papers (2023-11-17T06:36:43Z) - Correlation-Aware Mutual Learning for Semi-supervised Medical Image
Segmentation [5.045813144375637]
Most existing semi-supervised segmentation methods only focus on extracting information from unlabeled data.
We propose a novel Correlation Aware Mutual Learning framework that leverages labeled data to guide the extraction of information from unlabeled data.
Our approach is based on a mutual learning strategy that incorporates two modules: the Cross-sample Mutual Attention Module (CMA) and the Omni-Correlation Consistency Module (OCC)
arXiv Detail & Related papers (2023-07-12T17:20:05Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
We present a novel data-efficient semi-supervised framework to improve the generalization of image captioning models.
Our proposed method trains a captioner to learn from a paired data and to progressively associate unpaired data.
Our extensive and comprehensive empirical results both on (1) image-based and (2) dense region-based captioning datasets followed by comprehensive analysis on the scarcely-paired dataset.
arXiv Detail & Related papers (2023-01-26T15:25:43Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - Semi-weakly Supervised Contrastive Representation Learning for Retinal
Fundus Images [0.2538209532048867]
We propose a semi-weakly supervised contrastive learning framework for representation learning using semi-weakly annotated images.
We empirically validate the transfer learning performance of SWCL on seven public retinal fundus datasets.
arXiv Detail & Related papers (2021-08-04T15:50:09Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
We propose to adapt contrastive learning to work with meta-label annotations.
We use the meta-labels for pre-training the image encoder as well as to regularize a semi-supervised training.
Results on three different medical image segmentation datasets show that our approach highly boosts the performance of a model trained on a few scans.
arXiv Detail & Related papers (2021-07-29T04:30:46Z) - Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for
Annotation-efficient Cardiac Segmentation [65.81546955181781]
We propose a novel semi-supervised domain adaptation approach, namely Dual-Teacher.
The student model learns the knowledge of unlabeled target data and labeled source data by two teacher models.
We demonstrate that our approach is able to concurrently utilize unlabeled data and cross-modality data with superior performance.
arXiv Detail & Related papers (2020-07-13T10:00:44Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.