Remote detectability from entanglement bootstrap I: Kirby's torus trick
- URL: http://arxiv.org/abs/2301.07119v2
- Date: Thu, 18 Apr 2024 00:44:14 GMT
- Title: Remote detectability from entanglement bootstrap I: Kirby's torus trick
- Authors: Bowen Shi, Jin-Long Huang, John McGreevy,
- Abstract summary: Remote detectability is often taken as a physical assumption in the study of topologically ordered systems.
We show under the entanglement bootstrap approach that remote detectability is a necessary property; that is, we derive it as a theorem.
- Score: 12.486251587769203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote detectability is often taken as a physical assumption in the study of topologically ordered systems, and it is a central axiom of mathematical frameworks of topological quantum field theories. We show under the entanglement bootstrap approach that remote detectability is a necessary property; that is, we derive it as a theorem. Starting from a single wave function on a topologically-trivial region satisfying the entanglement bootstrap axioms, we can construct states on closed manifolds. The crucial technique is to immerse the punctured manifold into the topologically trivial region and then heal the puncture. This is analogous to Kirby's torus trick. We then analyze a special class of such manifolds, which we call pairing manifolds. For each pairing manifold, which pairs two classes of excitations, we identify an analog of the topological $S$-matrix. This pairing matrix is unitary, which implies remote detectability between two classes of excitations. These matrices are in general not associated with the mapping class group of the manifold. As a by-product, we can count excitation types (e.g., graph excitations in 3+1d). The pairing phenomenon occurs in many physical contexts, including systems in different dimensions, with or without gapped boundaries. We provide a variety of examples to illustrate its scope.
Related papers
- Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Emergent Topology in Many-Body Dissipative Quantum Matter [0.0]
We study the dissipative dynamics of pseudo-Hermitian many-body quantum systems.
We find the same topological features for a wide range of parameters suggesting that they are universal.
In the limit of weak coupling to the bath, topological modes govern the approach to equilibrium.
arXiv Detail & Related papers (2023-11-24T18:15:22Z) - Classification of dynamical Lie algebras for translation-invariant
2-local spin systems in one dimension [44.41126861546141]
We provide a classification of Lie algebras generated by translation-invariant 2-local spin chain Hamiltonians.
We consider chains with open and periodic boundary conditions and find 17 unique dynamical Lie algebras.
In addition to the closed and open spin chains, we consider systems with a fully connected topology, which may be relevant for quantum machine learning approaches.
arXiv Detail & Related papers (2023-09-11T17:59:41Z) - Toward a Geometric Theory of Manifold Untangling [12.229735866373073]
We conjecture that there is a more general solution to manifold untangling in the topological space without artificially defining any distance metric.
General strategies of both global manifold embedding and local manifold flattening are presented and connected with existing work on the untangling of image, audio, and language data.
arXiv Detail & Related papers (2023-03-07T19:47:01Z) - From Hermitian critical to non-Hermitian point-gapped phases [0.0]
We show the equivalence of topological invariants in critical systems with non-hermitian point-gap phases.
This correspondence may carry over to other features beyond topological invariants.
arXiv Detail & Related papers (2022-11-24T17:16:20Z) - The Lieb-Schultz-Mattis Theorem: A Topological Point of View [0.0]
We review the Lieb-Schultz-Mattis theorem and its variants.
We discuss the generalized Lieb-Schultz-Mattis theorem for models with U(1) symmetry and the extended Lieb-Schultz-Mattis theorem for models with discrete symmetry.
arXiv Detail & Related papers (2022-02-13T07:49:31Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
Deep Neural Networks are widely used for solving complex problems in several scientific areas, such as speech recognition, machine translation, image analysis.
We study a particular sequence of maps between manifold, with the last manifold of the sequence equipped with a Riemannian metric.
We investigate the theoretical properties of the maps of such sequence, eventually we focus on the case of maps between implementing neural networks of practical interest.
arXiv Detail & Related papers (2021-12-17T11:43:30Z) - Novel quantum phases on graphs using abelian gauge theory [0.0]
We build a class of frustration-free and gapped Hamiltonians based on discrete abelian gauge groups.
The resulting models have a ground state degeneracy that can be either a topological invariant or an extensive quantity.
We analyze excitations and identify anyon-like excitations that account for the topological entanglement entropy.
arXiv Detail & Related papers (2021-04-14T13:46:10Z) - Disentangling by Subspace Diffusion [72.1895236605335]
We show that fully unsupervised factorization of a data manifold is possible if the true metric of the manifold is known.
Our work reduces the question of whether unsupervised metric learning is possible, providing a unifying insight into the geometric nature of representation learning.
arXiv Detail & Related papers (2020-06-23T13:33:19Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.