Chirality Dependent Photon Transport and Helical Superradiance
- URL: http://arxiv.org/abs/2301.07231v4
- Date: Wed, 15 Nov 2023 19:00:18 GMT
- Title: Chirality Dependent Photon Transport and Helical Superradiance
- Authors: Jonah S. Peter, Stefan Ostermann, and Susanne F. Yelin
- Abstract summary: Chirality, or handedness, is a geometrical property denoting a lack of mirror symmetry.
Chirality is ubiquitous in nature and is associated with the non-reciprocal interactions observed in complex systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chirality, or handedness, is a geometrical property denoting a lack of mirror
symmetry. Chirality is ubiquitous in nature and is associated with the
non-reciprocal interactions observed in complex systems ranging from
biomolecules to topological materials. Here, we demonstrate that chiral
arrangements of dipole-coupled atoms or molecules can facilitate the
unidirectional transport of helical photonic excitations without breaking
time-reversal symmetry. We show that such helicity dependent transport stems
from an emergent spin-orbit coupling induced by the chiral geometry, which
results in nontrivial topological properties. We also examine the effects of
collective dissipation and find that many-body coherences lead to helicity
dependent photon emission: an effect we call helical superradiance. Our results
demonstrate an intimate connection between chirality, topology, and photon
helicity that may contribute to molecular photodynamics in nature and could be
probed with near-term quantum simulators.
Related papers
- Tracking Chirality in Photoelectron Circular Dichroism [0.0]
Photoelectron circular dichroism (PECD) originates from the interplay between a molecule's chiral nuclear scaffold and a circularly polarized laser field.
We present simulations of PECD for single-photon ionization in a hydrogenic single-electron model with an artificial chiral potential.
arXiv Detail & Related papers (2024-05-22T12:59:03Z) - Photon correlation time-asymmetry and dynamical coherence in multichromophoric systems [44.99833362998488]
We show that time-asymmetries in the cross-correlations of photons corresponding to different polarizations can be exploited to probe quantum coherent transport mechanisms and steady-state coherence properties.
Our results put forward photon correlation asymmetry as a promising approach to investigate coherent contributions to excited-stated dynamics in molecular aggregates and other many-site quantum emitters.
arXiv Detail & Related papers (2024-04-24T21:06:01Z) - Polaritons under Extensive Disordered Molecular Rotation in Optical
Cavities [4.788427041690547]
This study investigates the dynamic behavior of polaritons in an optical cavity containing one million molecules.
The rotational motion of molecules significantly affects the electromagnetic field distribution within the cavity.
The presence of level disorder induces diverse energy level structures, influencing the energy distribution of polaritons.
arXiv Detail & Related papers (2023-12-28T08:31:53Z) - Chirality-induced emergent spin-orbit coupling in topological atomic
lattices [0.0]
We show that photonic excitations in pseudospin-1/2 atomic lattices exhibit an emergent spin-orbit coupling when the geometry is chiral.
Our results demonstrate that chiral atom arrays are a robust platform for realizing spin-orbit coupled topological states of matter.
arXiv Detail & Related papers (2023-11-15T19:00:13Z) - Fast electrons interacting with chiral matter: mirror symmetry breaking
of quantum decoherence and lateral momentum transfer [91.3755431537592]
We show that matter chirality breaks mirror symmetry of scattered electrons quantum decoherence.
We also prove that mirror asymmetry also shows up in the distribution of the electron lateral momentum.
arXiv Detail & Related papers (2022-04-07T15:06:27Z) - A theoretical perspective on molecular polaritonics [0.0]
polaritonic phenomena emerging in light-matter interaction regime have proven to be difficult tasks.
The accurate treatment of the vibrational spectrum of the former is key, and simplified quantum models are not valid in many cases.
Loss and dissipation, in the form of absorption or radiation, must also be included in the theoretical description of polaritons.
arXiv Detail & Related papers (2022-01-08T13:29:46Z) - A non-Hermitian optical atomic mirror [6.023710971800604]
A high-reflectivity, non-Hermitian optical mirror can be realized by a two-dimensional subwavelength array of neutral atoms.
We show that exceptional points develop from a nondefective degeneracy by lowering the crystal symmetry of a square atomic lattice.
We also find, although the dipole-dipole interaction is reciprocal, the geometry-dependent non-Hermitian skin effect emerges.
arXiv Detail & Related papers (2021-10-19T15:55:59Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.