A theoretical perspective on molecular polaritonics
- URL: http://arxiv.org/abs/2201.02827v1
- Date: Sat, 8 Jan 2022 13:29:46 GMT
- Title: A theoretical perspective on molecular polaritonics
- Authors: M\'onica S\'anchez-Barquilla, Antonio I. Fern\'andez-Dom\'inguez,
Johannes Feist, Francisco J. Garc\'ia-Vidal
- Abstract summary: polaritonic phenomena emerging in light-matter interaction regime have proven to be difficult tasks.
The accurate treatment of the vibrational spectrum of the former is key, and simplified quantum models are not valid in many cases.
Loss and dissipation, in the form of absorption or radiation, must also be included in the theoretical description of polaritons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last decade, much theoretical research has focused on studying the
strong coupling between organic molecules (or quantum emitters, in general) and
light modes. The description and prediction of polaritonic phenomena emerging
in this light-matter interaction regime have proven to be difficult tasks. The
challenge originates from the enormous number of degrees of freedom that need
to be taken into account, both in the organic molecules and in their photonic
environment. On the one hand, the accurate treatment of the vibrational
spectrum of the former is key, and simplified quantum models are not valid in
many cases. On the other hand, most photonic setups have complex geometric and
material characteristics, with the result that photon fields corresponding to
more than just a single electromagnetic mode contribute to the light-matter
interaction in these platforms. Moreover, loss and dissipation, in the form of
absorption or radiation, must also be included in the theoretical description
of polaritons. Here, we review and offer our own perspective on some of the
work recently done in the modelling of interacting molecular and optical states
with increasing complexity.
Related papers
- When do molecular polaritons behave like optical filters? [1.9410328648791897]
This perspective outlines several linear optical effects featured by molecular polaritons arising in the collective strong light-matter coupling regime.
We show that, under these circumstances, molecular absorption within a cavity can be understood as the overlap between the polariton transmission and bare molecular absorption spectra.
We highlight the limitations of this treatment when the rates of the single-molecule processes that facilitate dark-state-to-polariton relaxation cannot be neglected.
arXiv Detail & Related papers (2024-08-09T12:48:34Z) - Multiple Interacting Photonic Modes in Strongly Coupled Organic Microcavities [0.0]
We show that the emergence of a vacuum Rabi splitting in linear spectroscopy is a necessary but not sufficient metric of coherent admixing between light and matter.
These vacuum-induced dissipative processes ultimately limit the extent of light-matter coherence that the system can sustain.
arXiv Detail & Related papers (2024-07-06T00:50:08Z) - Polaritons under Extensive Disordered Molecular Rotation in Optical
Cavities [4.788427041690547]
This study investigates the dynamic behavior of polaritons in an optical cavity containing one million molecules.
The rotational motion of molecules significantly affects the electromagnetic field distribution within the cavity.
The presence of level disorder induces diverse energy level structures, influencing the energy distribution of polaritons.
arXiv Detail & Related papers (2023-12-28T08:31:53Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Theoretical Challenges in Polaritonic Chemistry [0.0]
Polaritonic chemistry exploits strong light-matter coupling between molecules and confined electromagnetic field modes.
In wavelength-scale optical cavities light-matter interaction is ruled by collective effects.
Plasmonic subwavelength nanocavities allow even single molecules to reach strong coupling.
arXiv Detail & Related papers (2021-11-16T11:50:19Z) - Strong light-matter interaction effects on molecular ensembles [0.0]
We provide a detailed picture of the effect of photonic wires on spectral and transport properties of a disordered molecular material.
Our results raise important issues for future experiments and model building focused on unraveling new ways to manipulate chemistry with optical cavities.
arXiv Detail & Related papers (2021-07-14T23:00:41Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.