論文の概要: Using Topological Data Analysis to classify Encrypted Bits
- arxiv url: http://arxiv.org/abs/2301.07393v1
- Date: Wed, 18 Jan 2023 09:43:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-19 16:27:59.181128
- Title: Using Topological Data Analysis to classify Encrypted Bits
- Title(参考訳): トポロジカルデータ分析による暗号化ビットの分類
- Authors: Jayati Kaushik and Aaruni Kaushik and Upasana Parashar
- Abstract要約: 永続ホモロジーを適用して、暗号化の集合から得られる点雲の位相的特徴を生成する。
この機械学習パイプラインは、従来の機械学習モデルがそのタスクを実行できない場合に、データをうまく分類することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a way to apply topological data analysis for classifying encrypted
bits into distinct classes. Persistent homology is applied to generate
topological features of a point cloud obtained from sets of encryptions. We see
that this machine learning pipeline is able to classify our data successfully
where classical models of machine learning fail to perform the task. We also
see that this pipeline works as a dimensionality reduction method making this
approach to classify encrypted data a realistic method to classify the given
encryptioned bits.
- Abstract(参考訳): 暗号化されたビットを異なるクラスに分類するためにトポロジカルデータ解析を適用する方法を提案する。
永続ホモロジーを適用して、暗号化の集合から得られる点雲の位相的特徴を生成する。
この機械学習パイプラインは、従来の機械学習モデルがそのタスクを実行できない場合に、データをうまく分類することができる。
また、このパイプラインは、暗号化されたデータをリアルに分類し、与えられた暗号化されたビットを分類する手法として機能する。
関連論文リスト
- Bisimulation Learning [55.859538562698496]
我々は、大きな、潜在的に無限の状態空間を持つ状態遷移系の有限バイシミュレートを計算する。
提案手法は,実際に行われている他の最先端ツールよりも高速な検証結果が得られる。
論文 参考訳(メタデータ) (2024-05-24T17:11:27Z) - FLASC: A Flare-Sensitive Clustering Algorithm [0.0]
本稿では,クラスタ内の分岐を検知してサブポピュレーションを同定するアルゴリズムFLASCを提案する。
アルゴリズムの2つの変種が提示され、ノイズの堅牢性に対する計算コストが取引される。
両変種は計算コストの観点からHDBSCAN*と類似してスケールし,安定した出力を提供することを示す。
論文 参考訳(メタデータ) (2023-11-27T14:55:16Z) - Learning ECG signal features without backpropagation [0.0]
時系列型データの表現を生成する新しい手法を提案する。
この方法は理論物理学の考えに頼り、データ駆動方式でコンパクトな表現を構築する。
本稿では,ECG信号分類の課題に対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2023-07-04T21:35:49Z) - Unified Functional Hashing in Automatic Machine Learning [58.77232199682271]
高速に統一された関数型ハッシュを用いることで,大きな効率向上が得られることを示す。
私たちのハッシュは"機能的"であり、表現やコードが異なる場合でも同等の候補を識別します。
ニューラルアーキテクチャ検索やアルゴリズム発見など、複数のAutoMLドメインで劇的な改善がなされている。
論文 参考訳(メタデータ) (2023-02-10T18:50:37Z) - Detection and Evaluation of Clusters within Sequential Data [58.720142291102135]
Block Markov Chainsのクラスタリングアルゴリズムは理論的最適性を保証する。
特に、私たちのシーケンシャルデータは、ヒトのDNA、テキスト、動物運動データ、金融市場から派生しています。
ブロックマルコフ連鎖モデルの仮定は、実際に探索データ解析において有意義な洞察を得られることが判明した。
論文 参考訳(メタデータ) (2022-10-04T15:22:39Z) - Verifiable Encodings for Secure Homomorphic Analytics [10.402772462535884]
ホモモルフィック暗号化は、機密データ上のクラウドで除算された計算のプライバシを保護するための有望なソリューションである。
本稿では,クラウドベースの同型計算のクライアント検証を実現するための2つの誤り検出符号化とビルド認証手法を提案する。
我々は,暗号化されたデータ上で実行されたアウトソース計算の検証システムであるVERITASにソリューションを実装した。
論文 参考訳(メタデータ) (2022-07-28T13:22:21Z) - Class Introspection: A Novel Technique for Detecting Unlabeled
Subclasses by Leveraging Classifier Explainability Methods [0.0]
潜在構造はデータセットの分析を行う上で重要なステップである。
インスタンス説明手法を利用することで、既存の分類器を拡張して潜在クラスを検出することができる。
本稿では,分類器を自動解析するパイプラインと,この手法による結果を対話的に探索するWebアプリケーションについても述べる。
論文 参考訳(メタデータ) (2021-07-04T14:58:29Z) - Malware Traffic Classification: Evaluation of Algorithms and an
Automated Ground-truth Generation Pipeline [8.779666771357029]
地中構造データを生成するための自動パケットデータラベリングパイプラインを提案する。
この観測可能なメタデータから抽出された、ユニークで多様な機能のセットを利用する、さまざまな種類のクラスタリングアプローチを探索し、テストする。
論文 参考訳(メタデータ) (2020-10-22T11:48:51Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
本稿では,シーケンスデータの有用な表現が潜在空間における単純な構造を示すべきという直感に基づく,シーケンスデータの自己教師型表現学習法を提案する。
我々は,過去と将来のウィンドウ間の相互情報である潜在特徴系列の予測情報を最大化することにより,この潜時構造を奨励する。
提案手法は,ノイズの多い動的システムの潜時空間を復元し,タスク予測のための予測特徴を抽出し,エンコーダを大量の未ラベルデータで事前訓練する場合に音声認識を改善する。
論文 参考訳(メタデータ) (2020-10-07T03:34:01Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。