論文の概要: Image Embedding for Denoising Generative Models
- arxiv url: http://arxiv.org/abs/2301.07485v1
- Date: Fri, 30 Dec 2022 17:56:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-29 14:08:08.975631
- Title: Image Embedding for Denoising Generative Models
- Title(参考訳): 雑音生成モデルのための画像埋め込み
- Authors: Andrea Asperti, Davide Evangelista, Samuele Marro, Fabio Merizzi
- Abstract要約: 逆拡散過程の決定論的性質から拡散入射モデルに着目する。
本研究の副次として,拡散モデルの潜伏空間の構造についてより深い知見を得た。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising Diffusion models are gaining increasing popularity in the field of
generative modeling for several reasons, including the simple and stable
training, the excellent generative quality, and the solid probabilistic
foundation. In this article, we address the problem of {\em embedding} an image
into the latent space of Denoising Diffusion Models, that is finding a suitable
``noisy'' image whose denoising results in the original image. We particularly
focus on Denoising Diffusion Implicit Models due to the deterministic nature of
their reverse diffusion process. As a side result of our investigation, we gain
a deeper insight into the structure of the latent space of diffusion models,
opening interesting perspectives on its exploration, the definition of semantic
trajectories, and the manipulation/conditioning of encodings for editing
purposes. A particularly interesting property highlighted by our research,
which is also characteristic of this class of generative models, is the
independence of the latent representation from the networks implementing the
reverse diffusion process. In other words, a common seed passed to different
networks (each trained on the same dataset), eventually results in identical
images.
- Abstract(参考訳): 拡散モデルの普及は、単純で安定した訓練、優れた生成品質、安定した確率的基礎など、いくつかの理由から、生成モデリングの分野で人気が高まっている。
本稿では,デノナイジング拡散モデルの潜在空間に,デノナイジングが元の画像となる適切な「ノイズ」像を埋め込むという問題に対処する。
特に,その逆拡散過程の決定論的性質から,拡散暗黙モデルに着目する。
本研究の副次として, 拡散モデルの潜伏空間の構造, 探索, 意味軌道の定義, および編集目的の符号化の操作・条件について, より深い知見を得た。
本研究で注目されている特に興味深い特性は,この生成モデルのクラスの特徴であり,逆拡散過程を実装するネットワークからの潜在表現の独立性である。
言い換えれば、共通のシードは異なるネットワーク(それぞれが同じデータセットでトレーニングされた)に渡され、最終的に同じイメージになる。
関連論文リスト
- Edge-preserving noise for diffusion models [4.435514696080208]
本稿では,拡散確率モデル(DDPM)を一般化した新しいエッジ保存拡散モデルを提案する。
特に、エッジ保存と等方性ガウスノイズの間で異なるエッジ対応ノイズスケジューラを導入する。
モデルの生成過程はより高速に収束し, 対象の分布とより密に一致していることを示す。
論文 参考訳(メタデータ) (2024-10-02T13:29:52Z) - NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation [86.7260950382448]
画像の妥当性を補正する新しい手法としてノイズ拡散法を提案する。
NoiseDiffusionはノイズの多い画像空間内で動作し、これらのノイズの多い画像に生画像を注入することで、情報損失の課題に対処する。
論文 参考訳(メタデータ) (2024-03-13T12:32:25Z) - Denoising Diffusion Bridge Models [54.87947768074036]
拡散モデルは、プロセスを使用してデータにノイズをマッピングする強力な生成モデルである。
画像編集のような多くのアプリケーションでは、モデル入力はランダムノイズではない分布から来る。
本研究では, DDBM(Denoising Diffusion Bridge Models)を提案する。
論文 参考訳(メタデータ) (2023-09-29T03:24:24Z) - Factorized Diffusion Architectures for Unsupervised Image Generation and
Segmentation [24.436957604430678]
本研究では,非教師付き拡散モデルとして訓練されたニューラルネットワークアーキテクチャを,画像の生成とセグメント分割の両面から同時に学習する。
実験により,複数のデータセットにまたがって,高精度な教師なし画像分割と高品質な合成画像生成を実現することができた。
論文 参考訳(メタデータ) (2023-09-27T15:32:46Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - SVNR: Spatially-variant Noise Removal with Denoising Diffusion [43.2405873681083]
本稿では,より現実的で空間的変動のある雑音モデルを想定した,微分拡散の新たな定式化について述べる。
実験では,強い拡散モデルベースラインに対するアプローチの利点と,最先端の単一画像復号法に対するアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-28T09:32:00Z) - Real-World Denoising via Diffusion Model [14.722529440511446]
実世界のイメージデノイングは、自然の環境で撮影されたノイズの多い画像からクリーンなイメージを復元することを目的としている。
拡散モデルは画像生成の分野で非常に有望な結果を得た。
本稿では,実世界の画像のデノナイズに使用可能な,新しい一般デノナイズ拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-05-08T04:48:03Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
SinDiffusionは1つの自然な画像からパッチの内部分布を捉えるためにデノナイズ拡散モデルを利用する。
SinDiffusionは、2つのコア設計に基づいている。まず、SinDiffusionは、段階的にスケールが成長する複数のモデルではなく、1つのスケールで1つのモデルで訓練されている。
第2に,拡散ネットワークのパッチレベルの受容領域は,画像のパッチ統計を捉える上で重要かつ効果的であることを示す。
論文 参考訳(メタデータ) (2022-11-22T18:00:03Z) - On Conditioning the Input Noise for Controlled Image Generation with
Diffusion Models [27.472482893004862]
条件付き画像生成は、画像編集、ストック写真の生成、および3Dオブジェクト生成におけるいくつかのブレークスルーの道を開いた。
本研究では,入出力ノイズアーチファクトを慎重に構築した条件拡散モデルを提案する。
論文 参考訳(メタデータ) (2022-05-08T13:18:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。