Generalisation Through Negation and Predicate Invention
- URL: http://arxiv.org/abs/2301.07629v4
- Date: Wed, 27 Dec 2023 10:38:51 GMT
- Title: Generalisation Through Negation and Predicate Invention
- Authors: David M. Cerna and Andrew Cropper
- Abstract summary: We introduce an inductive logic programming (ILP) approach that combines negation and predicate invention.
We implement our idea in NOPI, which can learn normal logic programs with predicate invention.
Our experimental results on multiple domains show that our approach can improve predictive accuracies and learning times.
- Score: 25.944127431156627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to generalise from a small number of examples is a fundamental
challenge in machine learning. To tackle this challenge, we introduce an
inductive logic programming (ILP) approach that combines negation and predicate
invention. Combining these two features allows an ILP system to generalise
better by learning rules with universally quantified body-only variables. We
implement our idea in NOPI, which can learn normal logic programs with
predicate invention, including Datalog programs with stratified negation. Our
experimental results on multiple domains show that our approach can improve
predictive accuracies and learning times.
Related papers
- Language Models can be Logical Solvers [99.40649402395725]
We introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers.
LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers.
arXiv Detail & Related papers (2023-11-10T16:23:50Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - A Hybrid System for Systematic Generalization in Simple Arithmetic
Problems [70.91780996370326]
We propose a hybrid system capable of solving arithmetic problems that require compositional and systematic reasoning over sequences of symbols.
We show that the proposed system can accurately solve nested arithmetical expressions even when trained only on a subset including the simplest cases.
arXiv Detail & Related papers (2023-06-29T18:35:41Z) - Learning logic programs by combining programs [24.31242130341093]
We introduce an approach where we learn small non-separable programs and combine them.
We implement our approach in a constraint-driven ILP system.
Our experiments on multiple domains, including game playing and program synthesis, show that our approach can drastically outperform existing approaches.
arXiv Detail & Related papers (2022-06-01T10:07:37Z) - On the Configuration of More and Less Expressive Logic Programs [11.331373810571993]
We consider two well-known model-based AI methodologies, SAT and ASP, define a number of syntactic features that may characterise their inputs.
Results of a wide experimental analysis involving SAT and ASP domains, taken from respective competitions, show the different advantages that can be obtained by using input reformulation and configuration.
arXiv Detail & Related papers (2022-03-02T10:55:35Z) - Learning logic programs through divide, constrain, and conquer [22.387008072671005]
We introduce an inductive logic programming approach that combines classical divide-and-conquer search with modern constraint-driven search.
Our experiments on three domains (classification, inductive general game playing, and program synthesis) show that our approach can increase predictive accuracies and reduce learning times.
arXiv Detail & Related papers (2021-09-16T09:08:04Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
We present a new dataset, Handwritten arithmetic with INTegers (HINT), to examine machines' capability of learning generalizable concepts.
In HINT, machines are tasked with learning how concepts are perceived from raw signals such as images.
We undertake extensive experiments with various sequence-to-sequence models, including RNNs, Transformers, and GPT-3.
arXiv Detail & Related papers (2021-03-02T01:32:54Z) - The ILASP system for Inductive Learning of Answer Set Programs [79.41112438865386]
Our system learns Answer Set Programs, including normal rules, choice rules and hard and weak constraints.
We first give a general overview of ILASP's learning framework and its capabilities.
This is followed by a comprehensive summary of the evolution of the ILASP system.
arXiv Detail & Related papers (2020-05-02T19:04:12Z) - Evaluating Logical Generalization in Graph Neural Networks [59.70452462833374]
We study the task of logical generalization using graph neural networks (GNNs)
Our benchmark suite, GraphLog, requires that learning algorithms perform rule induction in different synthetic logics.
We find that the ability for models to generalize and adapt is strongly determined by the diversity of the logical rules they encounter during training.
arXiv Detail & Related papers (2020-03-14T05:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.